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Abstract

We prove a large deviation principle for additive functionals corresponding to
Kato measures by using the Gärtner-Ellis theorem. To this end, we prove the
differentiability of spectral functions for symmetric Markov processes, in particular,
Brownian motion, symmetric α-stable process and relativistic α-stable process.
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1 Introduction

As a useful approach in proving the large deviation principle, the Gärtner-Ellis theorem
is well known. The Gärtner-Ellis theorem generalizes Cramér’s method for the sum of
independent identically distributed random variables. The objective of this thesis is to
prove the large deviation principle for additive functionals of a symmetric Markov process,
in particular, of a symmetric Lévy process by employing the Gärtner-Ellis theorem. For
applying the Gärtner-Ellis theorem, we need to check two conditions:

(I) the existence of the logarithmic moment generating function (LMGF) and its iden-
tification,

(II) the “essentially smoothness” of the LMGF.

For the sake of introduction, we restrict our attention to the symmetric α-stable process
and explain how to check these conditions, although the symmetric α-stable process can
be replaced by more general symmetric Markov processes.

Let (Px, Xt) be a symmetric α-stable process on Rd (0 < α < 2), the pure jump
process generated by H = −1

2
(−∆)α/2. Let µ be a Green-tight measure in the Kato class

(in notation, µ ∈ K∞
d ) and Aµ

t the positive continuous additive functional (PCAF) in the
Revuz correspondence to µ (for the definition of K∞

d , see Definition 3.1 below). Let us
denote by −C(λ) the bottom of the spectrum of Hλµ = −H− λµ:

−C(λ) = inf

{
E(u, u) − λ

∫
Rd

u2dµ : u ∈ C∞
0 (Rd),

∫
Rd

u2dx = 1

}
, λ ∈ R1.

Here (E ,D(E)) is the Dirichlet form generated by the symmetric α-stable process and
C∞

0 (Rd) is the set of smooth functions with compact support. Then our main aim is to
establish the large deviation principle for Aµ

t :

Theorem 1.1. Assume that d ≤ 2α. Then for µ ∈ K∞
d , Aµ

t /t obeys the large deviation
principle with rate function I(θ):
(i) For any closed set F ⊂ R1,

lim sup
t→∞

1

t
log Px

(
Aµ

t

t
∈ F

)
≤ − inf

θ∈F
I(θ).

(ii) For any open set G ⊂ R1,

lim inf
t→∞

1

t
log Px

(
Aµ

t

t
∈ G

)
≥ − inf

θ∈G
I(θ),

where I(θ) be the Legendre transform of C(λ):

I(θ) = sup
λ∈R1

{θλ − C(λ)}, θ ∈ R1.
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We first need to show the condition (I), the existence of the LMGF, that is, the
existence of the limit,

lim
t→∞

1

t
log Ex[exp(λAµ

t )], λ ∈ R1. (1)

It was shown in [45] that in the case α = 2, that is, the case of Brownian motion, the
limit (1) exists for any Kato measure µ ∈ Kd. Moreover, if the Lévy measure J(dx) of a
symmetric Lévy process is exponentially localized, that is, there exists a positive constant
δ such that ∫

|x|>1

eδ|x|J(dx) < ∞, (2)

then the limit (1) exists for any Kato measure associated with the Lévy process. For
example, the Lévy measure of the relativistic α-stable process is known to be exponen-
tially localized ([8]). Situation is different for the symmetric α-stable process which does
not satisfy exponential localization, hence the method fails to work. Takeda [50] recently
proved that the LMGF for the symmetric α-stable process exists if µ belongs to the re-
stricted class K∞

d ⊂ Kd. Furthermore, he showed that the LMGF is identical to C(λ). His
method in [50] is completely different; he uses an ergodic theorem due to Fukushima [18].
In this way, the problem (I) is settled for additive functionals in Revuz correspondence
to a measure in the Green-tight class. Hence to obtain the Theorem 1.1 by applying the
Gärtner-Ellis theorem, it is enough to check the “essentially smoothness” of C(λ). There-
fore we concentrate on the proof of the differentiability of the spectral function C(λ) for
µ ∈ K∞

d . Indeed the differentiability implies the essentially smoothness of the LMGF. We
now sketch the proof of the differentiability.

When we study the differentiability of the spectral function C(λ) for symmetric α-
stable processes, we have to extend a critical theory to Schrödinger type operators with
non-local principal part. We define a real number λ+ as follows:

λ+ = inf{λ > 0 : C(λ) > 0}.

We can apply the analytic perturbation theory [24] to prove the differentiability for λ > λ+

and we know that C(λ) = 0 for λ < λ+. Hence the main problem is the differentiability
of C(λ) at λ = λ+. For one or two-dimensional Brownian motion, Takeda [49] proved the
differentiability at λ = λ+ (in this case, λ+ equals 0). For the proof of the differentiability,
a well-known property of the one or two-dimensional Brownian motion, the null Harris
recurrence, is used crucially. However, when d is greater than α, the symmetric α-stable
process is known to be transient and the method in [49] is not directly applicable to
transient α-stable processes, d > α. Nevertheless, if d ≤ 2α, we can use the method in
[49] through, so-called, Doob’s h-transform. This is our key idea. To this end, we first note
that Schrödinger type operators Hλ+µ = −H − λ+µ are critical. Here, the Schrödinger
type operator Hµ is said to be critical if it does not possess the minimal Green function but
possesses the harmonic function. In this sense, the criticality is regarded as an extended
notion of recurrence property for Schrödinger semigroups. Indeed, a semigroup generated
by the critical Schrödinger type operator can be transformed to a recurrent Markovian

semigroup through the h-transform. More precisely, let P λ+µ
t be the semigroup generated
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by Hλ+µ and h a harmonic function of Hλ+µ. The Doob’s h-transform is defined by

P λ+µ,h
t f(x) =

1

h(x)
P λ+µ

t (h(x)f(x)).

The h-transformed semigroup P λ+µ,h
t then becomes an h2m-symmetric Markovian semi-

group, where m is the Lebesgue measure on Rd. Since the existence of the Green function

of P λ+µ,h
t is equivalent to that of P λ+µ

t , we can construct a recurrent h2m-symmetric

Markov process with the semigroup P λ+µ,h
t . To apply the method in [49], we need study

the following two properties for the h-transformed process: (a) Harris recurrence; (b) null
recurrence.

To prove the property (a), we need to show that h is continuous. To obtain the
continuity of h, we develop various methods depending on underlying symmetric Markov
processes. For the transient Brownian motion [51], using the local property and the
strong Markov property of Brownian motions we first construct a sequence of bounded
continuous harmonic functions {hn} on a open ball. We then obtain the continuous
harmonic function on Rd as a limit of hn through the Ascoli-Arzelà theorem. To apply
the Ascoli-Arzelà theorem, we use the Harnack inequality for Schrödinger operator with
Kato potentials given by [6]. We would like to emphasize that this method is based on the
ellipticity of the Laplacian. For the stable process we can not apply this method and thus
need a different method. We first show the following equation for the harmonic function
h by using the strong Markov property:

h(x) = Ex[h(XτD
)] + λ+Ex

[∫ τD

0

h(Xs)dAµ
s

]
. (3)

The first term of the right hand side in the equation (3) is harmonic with respect to
the principal part −H. We show the continuity of the first term by using the Harnack
inequality for non-local type operator given by Bass-Levin [4]. Concerning the second term
of the right hand side in the equation (3) in the case of symmetric α-stable processes, we
show the continuity by the explicit expression of the Green function and the definition of
the Kato class. We can not use this method for relativistic α-stable processes since the
explicit form of Green function is unknown. Thus we prove the continuity by a different

method. We use the strong Feller property of P λ+µ
t ; if µ ∈ K∞

d , the Schrödinger semigroup
P µ

t transforms the set of bounded Borel functions to the set of the bounded continuous
function (it is called strong Feller property). Since the h-transformed process is recurrent,

it is conservative, hence P λ+µ,h
t 1 = 1. By the definition of the h-transform, we know that

P λ+µ
t h = h. Since we can show that the harmonic function h is bounded if µ is the Green-

tight Kato measure, we obtain the continuity of h. We would like to emphasize that this
method is applicable to various symmetric Markov processes whose Green functions are
explicitly unknown.

To show the strong Feller property of the semigroup, we need to consider various
equivalence of definitions of the Kato class. We use probabilistic tools (Markov property,
etc.) to prove the strong Feller property. In this paper, we define the Kato class by the
analytical definition in terms of the resolvent (see Definition 3.1 below). For Brownian
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motions and symmetric α-stable processes, it is known that the analytical definition of
Kato class is equivalent to the probabilistic one ([1], [56]). In [54], we confirm the equiva-
lence for relativistic α-stable processes by using arguments in [25] and [56]. Therefore we
can check the property (a).

Next on the property (b), the null-recurrence is defined by the infinity of the total
mass of invariant measure. Since the invariant measure of the h-transformed process is
h2m, the null recurrence of it is equivalent to h 6∈ L2(m). To this end, we need to study
the asymptotic behavior of h at infinity. We can show by using the Harnack inequality
that the asymptotic behavior of h is same to that of Green function, that is,

cG(x, 0) ≤ h(x) ≤ CG(x, 0), for |x| > 1

where G(x, y) is the Green function for the underlying symmetric Markov process and
c, C are positive constants. Since the explicit form of the function G(x, y) is known for
the Brownian motion and the symmetric α-stable process, we find that h /∈ L2(m) if and
only if d ≤ 2α for the symmetric α-stable process. In this way, we can check properties
(b). As a result, we establish the Theorem 1.1. Recently, Rao, Song and Vondraček [32]
obtained asymptotic behaviors of Green functions of Lévy processes including relativistic
α-stable processes. By using their result, we know that for the relativistic α-stable process,
its harmonic function does not belong to L2(m) if and only if d ≤ 4 and prove the
differentiability of its spectral function.

We now give the outline of this paper. In section 2, we prepare basic notions and
assumptions related to Markov processes, such as Hunt processes, positive continuous ad-
ditive functionals (PCAF), Dirichlet forms and convolution semigroup. We also introduce
the notion of subordinators. In section 3, we define some classes of measures, such as
Kato class Kd and its subclass K∞

d and S∞. We introduce the Revuz correspondence,
the correspondence between PCAF’s and measures. In section 4, we define the spectral
function and study its property. In section 5, we construct a finely continuous bounded
harmonic function with respect to a critical Schrödinger type operator. In section 6, we
prove the differentiability of the spectral function. To this end, we extend the Oshima’s
inequality to a critical Schrödinger type operator. We then prove the differentiability of
spectral function when the Schrödinger type operator is null critical. Finally, we make
a remark that the spectral function is not differentiable when the Schrödinger type op-
erator is positive critical. In section 7, using the Gärtner-Ellis theorem, we prove the
large deviation principle for additive functionals. In section 8, we prove the continuity
of the harmonic function in various cases. In particular, we discuss Brownian motions,
symmetric α-stable processes and relativistic α-stable processes. Finally in section 9, we
give an example which shows that the condition (I) and (II) for the Gärtner-Ellis theorem,
though sufficient, not necessary for the large deviation principle.

Throughout this paper, m is the Lebesgue measure and B(R) is an open ball with
radius R centered at the origin. We use c, C, ..., etc as positive constants which may be
different at different occurrences.
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2 Preliminaries

Let S be a locally compact separable metric space and m is a Radon measure with
supp[m] = S. We now consider a σ-finite measure space (S,B,m) and take as a real
Hilbert space H the L2-space L2(S; m) consisting of square integrable m-measurable ex-
tended real valued functions on S. Let M = (Ω,F ,Ft, θt, Px, Xt) be a symmetric Hunt
process on S and Ex be the expectation with respect to Px. Here {Ft}t≥0 is the min-
imal (augmented) admissible filtration and θt, t ≥ 0, is the shift operators satisfying
Xs(θt) = Xs+t identically for s, t ≥ 0. Let Pt be the Markov semigroup of M, that is for
a suitable function f ,

Ptf(x) = Ex[f(Xt)].

Here we explain about Hunt processes. Let M = (Ω,F ,Ft, θt, Px, Xt) be as above.
Let S∆ be one-point compactification of S. First we note following conditions.
(i) for each x ∈ S∆ a stochastic process with state space S∆ is given by (Ω,F , Px, (Xt)t∈[0,∞]);
(ii) Px(Xt ∈ B) is B-measurable in x ∈ S for each B ∈ B and each t ≥ 0;
(iii) (Markov property)

Px(Xt+s ∈ B|Ft) = PXt(Xs ∈ B), Px − a.s.

holds for all x ∈ S,B ∈ B and t, s ≥ 0;
(iv) it holds P∆(Xt = ∆) = 1; for all t ≥ 0;
(v) Px(X0 = x) = 1 for all x ∈ S;
Conditions (i)-(v) is satisfied, then the process M is called a normal Markov process.

Let us consider a normal Markov process M on (S,B) and assume the following addi-
tional conditions concerning the pair (Ω, Xt):
Condition (H):
(a) X∞(ω) = ∆ for all ω ∈ Ω;
(b) with ζ(ω) := inf{t ≥ 0 : Xt(ω) = ∆} it follows that

Xt(ω) = ∆

for all t ≥ ζ(ω);
(c) there exists a family of shift operators (θt)t∈[0,∞] from Ω to Ω such that

Xs+t(ω) = Xs(θtω)

holds for all s, t ≥ 0;
(d) for each ω ∈ Ω, the sample path t 7→ Xt(ω) is right continuous on [0,∞) and the left
limit on (0,∞) (inside X∆). The ζ is called the life time of M.

For A ∈ F∞,

Pµ(A) :=

∫
X

Px(A)µ(dx), µ ∈ P(S∆),

where P(S∆) denotes the family of all probability measures on S∆. The Markov processes
M is said to have the strong Markov property if for all {Ft}-stopping times σ.

Pµ(Xσ+s ∈ B|Fσ) = PXσ(Xs ∈ B), Pµ − a.s.
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for any µ ∈ P(S∆), B ∈ B, s ≥ 0 and {Ft}-stopping time σ. We say that M is quasi-left
continuous if for any {Ft}-stopping time σn increasing to σ

Pµ

(
lim

n→∞
Xσn = Xσ, σ < ∞

)
= Pµ(σ < ∞), µ ∈ P(S∆).

A normal Markov process M on (S,B) satisfying the condition (H) is called a Hunt process
if there exists an admissible filtration {Ft} such that M is strong Markov and quasi-left
continuous with respect to {Ft}. In the sequel, when we state about Markov processes,
they stand for Hunt processes.

Let us assume about the based Markov process M.

Assumption 2.1. 　
(I) M is irreducible, that is, for any Pt-invariant set B it satisfies either m(B) or m(S \
B) = 0.
(II) There exists a transition density p(t, x, y) associated with M, that is, the process M
is absolutely continuous with respect to m.
(III) M is symmetric, that is, p(t, x, y) = p(t, y, x).
(IV) The transition density p(t, x, y) is jointly continuous on [0,∞) × S × S.
(V) M is conservative, that is, Pt1 = 1 for any t > 0.
(VI) The semigroup Pt has the strong Feller property, that is, for any f ∈ Bb, Ptf is the
bounded continuous function.

In this paper, we always assume that S = Rd and m is the Lebesgue measure on Rd

unless explicitly stated otherwise. We denote by Gβ(x, y) the β-resolvent kernel, that is,

Gβ(x, y) =

∫ ∞

0

e−βtp(t, x, y)dt.

If the process M is transient, there exists the 0-resolvent kernel G0(x, y) and it is called
Green function. We denote G0(x, y) by G(x, y). Hence for all measurable f ≥ 0,

Ex

[∫ ∞

0

f(Xs)dx

]
=

∫
X

G(x, y)f(y)m(dy).

Let H be the generator of the Markov process M, that is

Pt = etH.

Definition 2.2. A real valued process At(ω), t ≥ 0 is called a positive continuous additive
functional (in abbreviation PCAF) of M if the following conditions are satisfied:
(A.1) At(ω) is Ft-measurable.
(A.2) There exists a set Λ ∈ F∞ such that Px(Λ) = 1, ∀x ∈ X, θtΛ ⊂ Λ, and moreover
for each ω ∈ Λ, A·(ω) is positive continuous, A0(ω) = 0.
(A.3) At+s(ω) = As(ω) + At(θsω), ∀s, t ≥ 0.
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Let (E ,D(E)) be the Dirichlet form generated by M, that is,

E(u, v) = lim
t↓0

1

t
(u − Ptu, v)m = (−Hu, v)m,

D(E) =
{
u ∈ L2(m) : E(u, u) < ∞

}
,

where (·, ·)m denotes the L2(m)-inner product. The Dirichlet form theory is due to
Fukushima, Oshima and Takeda’s book [19]. For α ≥ 0, we define

Eα(u, v) := E(u, v) + α

∫
u2dx.

Given a Dirichlet space (E ,D(E)) relative L2(S; m), we denote by De(E) the family of
m-measurable functions u on S such that |u| < ∞ m-a.e. and there exists an E-Cauchy
sequence {un} of functions in D(E) such that limn→∞ un = u m-a.e. We call {un} as
above an approximating sequence for u ∈ De(E). De(E) is linear space containing D(E).

Theorem 2.3 ([19] Theorem 1.5.2). Let (E ,D(E)) be a Dirichlet space relative to L2(S; m).
(I) For any u ∈ De(E) and its approximating sequence {un}, the limit

E(u, u) = lim
n→∞

E(un, un)

exists and does not depend on the choice of the approximating sequence for u.
(II) D(E) = De(E) ∩ L2(S; m).

By virtue of Theorem 2.3, E can be well extended to De(E) as a non-negative definite
symmetric bilinear form. We call (De(E), E) the extended Dirichlet space of (E ,D(E)).
If the process M is transient, the extended Dirichlet space (De(E), E) becomes Hilbert
space. If the process M is recurrent, the constant function u = 1 belongs to De(E).

A core of a symmetric Dirichlet form E is by definition a subset C of D(E)∩C0(S) such
that C is dense in D(E) with E1-norm and dense in C0(S) with uniform norm. E is called
regular if E possesses a core. It is well-known that if (E ,D(E)) is a regular Dirichlet form,
there exists a Hunt process associated with (E ,D(E)). By [19, Example 1.2.1], if S = Rd,
a Dirichlet form has the following representation, so-called Beurling-Deny representation;

E(u, v) =
d∑

i,j=1

∫
Rd

∂u(x)

∂xi

∂v(x)

∂xj

νij(dx)+

∫∫
Rd×Rd\4

(u(x)−u(y))(v(x)−v(y))J(dxdy), (4)

where νij (1 ≤ i, j ≤ d) are Radon measures on Rd such that for any ξ ∈ Rd and any
compact set K ⊂ D,

d∑
i,j=1

ξiξjνij(K) ≥ 0, νij(K) = νji(K), 1 ≤ i, j ≤ d.

4 is diagonal in Rd ×Rd, that is, 4 = {(x, x) : x ∈ Rd}, J is a positive symmetric Radon
measure on the product space Rd × Rd off the diagonal 4 such that for any compact set
K and open set D1 with K ⊂ D1 ⊂ Rd∫∫

Rd×Rd\4
|x − y|2J(dxdy) < ∞, J(K, Rd \ D1) < ∞.
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The first term in Beurling-Deny representation (4) is called diffusion term and the second
one is called jump term. Indeed, the Beurling-Deny representation has one more term,
so-called killing term. But we only concern with conservative Markov processes in this
paper. Hence we omit the third term, killing term. In this paper, we only consider that
the diffusion term is Dirichlet integral, that is, 1

2
D. For the jump term, we consider

various cases.
Let p(ξ) be the symbol of the generator of the symmetric Markov process. In this

paper, we assume that p(ξ) does not depend on x ∈ Rd and radially symmetric, that is
p(ξ) = p(|ξ|).

A system of probability measures {νt, t > 0} on Rd is said to be a continuous symmetric
convolution semigroup if 

νt ∗ νs = νt+s t, s > 0
νt(A) = νt(−A) A ∈ B(Rd)
lim
t↓0

νt = δ0

where νs ∗ νt denotes the convolution between νs and νt, that is,
∫

Rd νt(A − y)νs(dy) and
δ0 is the Dirac measure concentrated at the origin. Also what the Markov process M is
relative to the convolution semigroup νt means

νt(A − x) =

∫
A

p(t, x, y)dy, forA ∈ B(Rd).

The celebrated Lévy-Khinchin formula under the present symmetry assumption reads
as follows: 

ν̂t(ξ)

(
=

∫
Rd

ei〈ξ,x〉νt(dx)

)
= e−tp(ξ),

p(ξ) =
1

2
(Sξ, ξ) +

∫
Rd

(1 − cos(〈ξ, x〉)J(dx),

where 〈·, ·〉 denote the Euclid inner product, S is a non-negative definite d× d symmetric
matrix. J is a symmetric measure on Rd \ {0} such that∫

Rd\{0}

|x|2

1 + |x|2
J(dx) < ∞.

Given convolution semigroup, it is known that
E(u, v) =

∫
Rd

û(ξ)¯̂v(ξ)p(ξ)dξ

D(E) = {u ∈ L2(Rd) :

∫
Rd

|û(ξ)|2p(ξ)dξ < ∞}

where û is the Fourier transform of u, that is,

û(ξ) = (2π)−d/2

∫
Rd

ei〈ξ,x〉u(x)dx.
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Let {νt, t > 0} be a convolution semigroup. From the expression

Ptf(x) =

∫
Rd

f(x + y)νt(dy), f ∈ C∞(Rd),

it is easy to see that {Pt, t > 0} has the property: Pt(C∞) ⊂ C∞. Let M be the Markov
process generated by Pt. The process M possesses the spatial homogeneity:

Px(Xt1 ∈ E1, · · · , Xtk ∈ Ek) = P0(Xt1 + x ∈ E1, · · · , Xtk + x ∈ Ek),

where t1 < · · · < tk, E1 ∈ B(Rd), · · · , Ek ∈ B(Rd).
The process M is called Lévy process if it possesses, together condition (H) of sample

paths, the property of stationary independent increments, that is, for all 0 ≤ s < t the
random variable Xt − Xs is independent of Fs and

PXt−Xs = PXt−s .

Definition 2.4. Denote by O the family of all open subset of S. For A ∈ O we define

LA = {u ∈ D(E) : u ≥ 1 m − a.e. on A}

Cap(A) =

{
inf

u∈LA

E1(u, u), La 6= ∅
∞, LA = ∅

　
for any set A ⊂ S we let

Cap(A) = inf
B∈O, A⊂B

Cap(B).

We call a function u on S quasi-continuous if there exists for any ε > 0 an open set
G ⊂ S such that Cap(G) < ε and the restriction of u to S \ G is continuous. It is known
that each u ∈ D(E) admits a quasi-continuous version (cf. [19, Theorem 2.1.3]). From
now on, every function u ∈ D(E) is considered to be quasi-continuous already.

Suppose that the Dirichlet form (E ,D(E)) is transient, that is, the process which
corresponds to (E ,D(E)) is transient. Let us define the 0-order capacity Cap(0)(A) by
replacing D(E) and E1 in Definition 2.4 with De(E) and E respectively. Then by [19,
Theorem 2.1.6], a function is quasi continuous with respect to Cap(0) if and only if it is
quasi continuous with respect to Cap. Hence any u ∈ De(E) admits a quasi continuous
modification ũ (cf. [19, Theorem 2.1.7]). Every function u ∈ De(E) is also considered to
be quasi-continuous already.

A set B ⊂ S∆ is called nearly Borel measurable if for each µ ∈ P(S∆) there exist
Borel sets B1, B2 ∈ B∆(S) such that B1 ⊂ B ⊂ B2 and Pµ(Xt ∈ B2 \ B1, ∃t ≥ 0) = 0.

Let {Pt, t > 0} be the Markovian semigroup on L2(S; m) associated with the Dirichlet
form (E ,D(E)). u ∈ L2(S; m) is called α-excessive (with respect to {Pt, t > 0}) if

u ≥ 0, e−αtPtu ≤ u, m − a.e., ∀t > 0.

When α = 0, the 0-excessive function is simply called excessive (or Pt-excessive) function.
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Definition 2.5. A nearly Borel measurable function u is finely continuous if and only
if t 7→ u(Xt) is right continuous on [0,∞) a.s. In particular, any α-excessive function is
finely continuous.

We introduce the notion of subordinators.

Definition 2.6. A stochastic process T = {Tt, t ≥ 0} is said to be a subordinator if it
is one-dimensional Lévy process taking values in [0,∞) with T0 = 0. Let φ be its Laplace
exponent:

E [exp(−λTt)] = exp(−tφ(λ)) for every t > 0 and λ > 0.

In this paper, when we use the subordinator, we subordinate the Brownian motion
only.

Definition 2.7. A real-valued function f ∈ C∞((0,∞)) is called a Bernstein function if

f ≥ 0, (−1)k dkf(x)

dxk
≤ 0 (5)

holds for all k ∈ N.

It is known that the Laplace exponent φ can be expresser as

φ(λ) = bλ +

∫ ∞

0

(1 − exp(−λx))π(dx)

for some b ≥ 0 and Lévy measure π on (0,∞) with
∫ ∞
0

(1 ∧ x)π(dx) < ∞. The Laplace
exponent φ is a Bernstein function with φ(0) = 0. Conversely, any Bernstein function f
with f(0) = 0 is the Laplace exponent of a subordinator.

We introduce some examples of subordinator.
In the reminder in this section, M = (Px, Bt) is a Brownian motion in Rd running

twice as fast as the standard Brownian motion, that is, its generator is ∆. Suppose that
T := {Tt, t ≥ 0} is a subordinator with Laplace exponent φ. We suppose that T is
independent of M. Let Mφ be the subordinate process {BTt , t ≥ 0}.

Example 2.8. Let φ(λ) = 1
2
λα/2, where α ∈ (0, 2]. Then Mφ is called a symmetric α-

stable process in Rd. When α = 2, the subordinate process becomes the standard Brownian
motion.

Example 2.9. Let φ(λ) = (λ+m2/α)α/2−m (m > 0), where α ∈ (0, 2) and m > 0. Then
Mφ is called a relativistic α-stable process in Rd.

Example 2.10. Let φ(λ) = log (1 + λα/2), α ∈ (0, 2]. The process Mφ is called a geo-
metric α-stable process for α ∈ (0, 2) and a variance gamma process for α = 2.

Remark 2.11. Let T = {Tt, t ≥ 0} is a subordinator with the Laplace exponent φ and it
is independent of M. The generator of the subordinate process Mφ becomes −φ(−∆).
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Let Pt be a positive semigroup with integral kernel p(t, x, y). For a positive Pt-excessive
function h(x) set

ph(t, x, y) =
1

h(x)
p(t, x, y)h(y), t > 0, x, y ∈ Rd, (6)

and denote by P h
t the associated semigroup, P h

t f(x) =
∫

Rd ph(t, x, y)f(y)dy. Then ph(t, x, y)
becomes a transition probability density because

P h
t 1(x) =

1

h(x)
Pth(x) ≤ h(x)

h(x)
= 1.

We call the process generated by P h
t the Doob’s h-transformed process. This process is a

h2m-symmetric Markov process. Indeed,

(P h
t f, g)h2m =

∫
P h

t f(x)g(x)h2(x)dx

=

∫
1

h(x)
Pt(h(x)f(x))g(x)h2(x)dx

=

∫
Pt(h(x)f(x))h(x)g(x)dx

=

∫
f(x) · 1

h(x)
Pt(h(x)g(x))h2(x)dx (by symmetry of Pt)

=

∫
f(x)P h

t (g(x))h2(x)dx = (f, P h
t g)h2m.

3 Some classes of measures

Now we define some classes of measures. These classes play important roles as potentials.
For a measure µ, let us denote

µR(·) = µ(· ∩ B(R)), µRc = µ(· ∩ B(R)c).

3.1 Kato class

First we define the Kato class.

Definition 3.1. Let µ be a positive Radon measure on Rd.
(I) We call Kato class (in abbreviation Kd) the set of measures if the measure µ satisfies

lim
β→∞

sup
x∈Rd

∫
Rd

Gβ(x, y)µ(dy) = 0, (7)

where Gβ(x, y) is the β-potential density.
(II) We say that a measure µ is locally in the Kato class (µ ∈ Kd,loc in notation), if µ ∈ Kd
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for any R > 0.
(III) The class K∞

d is defined by the set of measures belonging Kato class and satisfying

lim
R→∞

sup
x∈Rd

∫
|y|>R

G(x, y)µ(dy) = 0, (transient case) (8)

lim
R→∞

sup
x∈Rd

∫
|y|>R

G1(x, y)µ(dy) = 0, (recurrent case) (9)

(IV) We said that the function V belongs to Kd (respectively, K∞
d ) if the measure V dx ∈ Kd

(respectively, K∞
d ).

Remark 3.2. The element of class K∞
d is called “Green tight Kato measure”.

Now we concern with the equivalence of various definitions for Kato class.
Using the Theorem 1 and Lemma 5 in [56] and Lemma 3.1 in [25], we obtain the

following proposition.

Proposition 3.3. If the Green function G(x, y) depends only on |x − y|, i.e. G(x, y) =
G(|x − y|) and there exits a constant b > 1 such that

lim sup
r→0

G(br)

G(r)
< 1,

the following assertions are equivalent.
(I) µ ∈ Kd.

(II) lim
a→0

sup
x∈Rd

∫
|x−y|≤a

G(x, y)µ(dy) = 0.

(III) lim
t↓0

sup
x∈Rd

Ex[A
µ
t ] = 0.

(IV) lim
r↓0

sup
x∈Rd

Ex[A
µ
τB(x,r)

] = 0.

Remark 3.4. The (II) in Proposition 3.3 is alternative characterization of Kd ([23]). In
this remark, we only consider that the process M is the Brownian motion. The Kato class
Kd is classically defined by the following:

V ∈ Kd ⇐⇒ sup
x

∫
|x−y|<1

|V (y)|dy < ∞, when d = 1

lim
a→0

sup
x

∫
|x−y|≤a

log

(
1

|x − y|

)
|V (y)|dy = 0, when d = 2

lim
a→0

sup
x

∫
|x−y|≤a

1

|x − y|d−2
|V (y)|dy = 0, when d ≥ 3.

Now we provide known facts on measures in the Kato class. Let Gβµ be the β-potential
of µ, that is,

Gβµ(x) =

∫
Gβ(x, y)µ(dy).

The following theorem is a Poincaré type inequality which is derived by Stollman-Voigt
[43].
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Theorem 3.5 ([43]). Let µ ∈ Kd. Then for β ≥ 0,∫
Rd

u2(x)µ(dx) ≤ ‖Gβµ‖∞Eβ(u, u), for any u ∈ D(E). (10)

If β = 0, we can replace D(E) by De(E).

By the definition of Kato class, we know that

lim
β→∞

‖Gβµ‖∞ = 0. (11)

Therefore the equation (10) shows that if the measure µ belongs to Kd, for any ε > 0
there exists M(ε) such that∫

Rd

u2(x)µ(dx) ≤ εE(u, u) + M(ε)

∫
Rd

u2dx, u ∈ D(E). (12)

3.2 Class S∞

Next we introduce a class of some small measures which have a relation to Kato class.
This class plays important role in this paper. In the sequel, M is transient. In this class,
the gauge and conditional gauge theorems (cf. [48], [53], [9]) holds. It is known that the
gaugeability, conditional gaugeability and subcriticality of the Schrödinger type operator
are equivalent.

Definition 3.6 ([9] Definition 3.1). Let M be transient. A positive smooth measure is
said to be in the class S∞ if for any ε > 0 there is a Borel subset K = K(ε) of finite
µ-measure and a constant δ = δ(ε) > 0 such that

sup
(x,z)∈(Rd×Rd)\4

∫
Kc

G(x, y)G(y, z)

G(x, z)
µ(dy) ≤ ε (13)

and for all measurable sets B ⊂ K with µ(B) < δ,

sup
(x,z)∈(Rd×Rd)\4

∫
B

G(x, y)G(y, z)

G(x, z)
µ(dy) ≤ ε. (14)

It is known that S∞ ⊂ K∞
d (cf. [11]).

We give some examples of S∞.

Example 3.7. Let M be the symmetric α-stable process (0 < α ≤ 2) and d = 1. Then
the Dirac measure at the origin δ0 belongs to S∞.

Example 3.8. Let M be the symmetric α-stable process (0 < α ≤ 2) and d ≥ 2. Let σr

be the surface measure of a sphere with radius r, Sr = {x ∈ Rd : |x| = r}. Then σr ∈ S∞.

17



3.3 Schrödinger form, relation between PCAF and Kato class

In the sequel, we assume the following;

Assumption 3.9. 　
(I) For µ = µ+ − µ− ∈ S∞ − S∞, the embedding of De(E) to L2(µ±) is compact.
(II) For any compact set K ⊂ Rd,the measure IKm ∈ S∞.

Remark 3.10. The Brownian motion and symmetric α-stable process are satisfied (I) of
Assumption 3.9. Above two processes and the relativistic α-stable process are satisfied (II)
of Assumption 3.9.

For µ = µ+ − µ− ∈ Kd −Kd, define a symmetric bilinear form Eµ by

Eµ(u, u) = E(u, u) +

∫
Rd

u2dµ, u ∈ De(E), (15)

Since µ ∈ Kd charges no set of zero capacity by [2, Theorem 3.3], the form Eµ is well
defined. We see from [2, Theorem 4.1] that (Eµ,D(E)) becomes a lower semi-bounded
closed symmetric form. We call (Eµ,D(E)) a Schrödinger form. Denote by Hµ the self-
adjoint operator generated by (Eµ,D(E)):

Eµ(u, v) = (Hµu, v).

Let P µ
t be the L2-semigroup generated by Hµ: P µ

t = exp(−tHµ). We see from [2, Theorem
6.3(iv)] that P µ

t admits a symmetric integral kernel pµ(t, x, y) which is jointly continuous
function on (0,∞) × Rd × Rd.

For µ ∈ Kd, let Aµ
t be a positive continuous additive functional which is in the “Revuz

correspondence” with µ: for any f ∈ B+ and γ-excessive function h,

< hµ, f >= lim
t→0

1

t
Ehm

(∫ t

0

f(Xs)dAµ
s

)
, (16)

([19, p.188]). For µ = µ+ − µ− ∈ Kd −Kd, set Aµ
t = Aµ+

t − Aµ−

t .

Example 3.11. Let V be the function belonging the Kato class Kd and µ(dx) = V (x)dx.
Then the additive functional Aµ

t corresponding with µ is expressed by

Aµ
t =

∫ t

0

V (Xs)ds.

Example 3.12. Let M be the Brownian motion, the symmetric α-stable process (1 <
α ≤ 2) or the relativistic α-stable process (1 < α < 2). Let d = 1 and µ = δ0, where δ0 is
the Dirac measure at the origin. Then the corresponding additive functional is the local
time at the origin l0(t).
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By the Feynman-Kac formula, the semigroup P µ
t is written as

P µ
t f(x) = Ex[exp(−Aµ

t )f(Xt)]. (17)

Now we introduce the time-changed process by additive functional Aµ
t . Let τt be the

right continuous inverse of Aµ
t , that is,

τt = inf{s : Aµ
s > t}

with the convention that inf ∅ = ∞. Let S̃ := {x ∈ Rd : Px(τ0 = 0) = 1} be the fine
support of µ and let S be the topological support of µ. The time-changed process Y µ

t of
Xt by Aµ

t is defined by Y µ
t = Xτt , whose state space is S̃. However, since S̃ ⊂ S modulo a

set having zero capacity, the semigroup of Y µ
t is µ-symmetric and determines a strongly

continuous semigroup on L(S, µ). The principal eigenvalue of the time-change process of
this type plays important role to construct the harmonic function in §5.

4 Spectral functions

In this section, we define the spectral function that is a main objective in this paper.
After defining the spectral function, we state properties of spectral functions.

The spectral function C(λ) is defined by the bottom of the spectrum of Hλµ: for
µ = µ+ − µ− ∈ S∞ − S∞,

C(λ) = − inf

{
Eλµ(u, u) ; u ∈ D(E),

∫
Rd

u2dx = 1

}
. (18)

The following lemma is relation between the spectral function and the bottom of
spectral of times changed process.

Lemma 4.1. The following statements are equivalent.

(i) inf

{
E(u, u) +

∫
Rd

u2dµ+ :

∫
Rd

u2dµ− = 1

}
< 1.

(ii) inf

{
E(u, u) +

∫
Rd

u2dµ :

∫
Rd

u2dx = 1

}
< 0.

Proof. Assume (i). Then there exists a ϕ0 ∈ C∞
0 (Rd) with

∫
Rd ϕ2

0dµ− = 1 such that

E(ϕ0, ϕ0) +

∫
Rd

ϕ2
0dµ+ < 1.

Hence we see that

E(ϕ0, ϕ0) +

∫
Rd

ϕ2
0dµ+ <

∫
Rd

ϕ2
0dµ−.

Letting

u0 =
ϕ0√∫

Rd ϕ2
0dx

,
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we have

E(u0, u0) +

∫
Rd

u2
0dµ < 0.

Assume (ii). Then there exists a ψ0 ∈ C∞
0 (Rd) with

∫
Rd ψ2

0dx = 1 such that

E(ψ0, ψ0) +

∫
Rd

ψ2
0dµ < 0.

Letting

u0 =
ψ0√∫

Rd ψ2
0dµ−

,

we have

E(u0, u0) +

∫
Rd

u2
0dµ+ < 1.

Remark 4.2. We see from [48, Lemma 3.5] that if

inf

{
E(u, u) +

∫
Rd

u2dµ :

∫
Rd

u2dx = 1

}
> 0,

then

inf

{
E(u, u) +

∫
Rd

u2dµ+ :

∫
Rd

u2dµ− = 1

}
> 1.

However, the converse does not hold in general. In fact, suppose that the process M is
the Brownian motion and µ = −σR, the surface measure of the sphere ∂B(R). Then the
first infimum is equal to zero, while the second one is greater than 1 for R < d−2

2
([48]).

Define

λ+ = inf{λ > 0 : C(λ) > 0}
λ− = sup{λ < 0 : C(λ) > 0}.

It follows from µ+, µ− ∈ S∞ that λ+ > 0 and λ− < 0 (cf. [49, Lemma 4.2]).

Lemma 4.3. Let µ = µ+−µ− ∈ S∞−S∞ with µ− 6≡ 0 (resp. µ+ 6≡ 0). Then the number
λ+ (resp. λ−) is characterized as a unique positive (resp. negative) number such that

inf

{
E(u, u) + λ+

∫
Rd

u2dµ+ : λ+

∫
Rd

u2dµ− = 1

}
= 1. (19)(

resp. inf

{
E(u, u) − λ−

∫
Rd

u2dµ− : −λ−
∫

Rd

u2dµ+ = 1

}
= 1.

)
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Remark 4.4. Since Hλ−µ = H + (−λ−)µ− − (−λ−)µ+, we only consider λ+ from now
on.

proof of lemma 4.3. Let Rd = F + F c be the Hahn decomposition: µ−(F ) = µ−(Rd),
µ+(F c) = µ+(Rd). Take R > 0 so large that µ−(F ∩ B(R)) > 0 and let A = F ∩ B(R).
Take a sequence of non-negative functions fn in C∞

0 (Rd) such that∫
Rd

(IA(x) − fn(x))2|µ|(dx) −→ 0 as n → ∞.

It then holds that

lim
n→∞

∫
Rd

f2
n(x)µ−(dx) = µ−(A) > 0, lim

n→∞

∫
Rd

f2
n(x)µ+(dx) = µ+(A) = 0,

and consequently, there exists a function f ∈ C∞
0 (Rd) such that∫

Rd

f2(x)µ−(dx) = 1,

∫
Rd

f2(x)µ+(dx) < 1. (20)

Set

F (λ) = inf

{
E(u, u) + λ

∫
Rd

u2(x)µ+(dx) :

∫
Rd

u2(x)µ−(dx) = 1

}
. (21)

First we find that F (0) > 0 (F (0) is the bottom of the spectrum of the time changed

process of M by the additive functional Aµ−

t (cf. [46, Lemma 3.1])). Indeed, since the
embedding of De(E) to L2(µ−) is compact, there exists the function u0 in De(E) that
attains the infimum of (21). If F (0) = 0, then E(u0, u0) = 0, and thus u0 = 0 because
(De(E), E) is a Hilbert space. This contradicts that

∫
Rd u2

0dµ− = 1. Moreover, F (λ),
λ ≥ 0, is a concave function by the definition and dominated by the function G(λ) :=
E(f, f) + λ

∫
Rd f2(x)µ+(dx), where f is a function satisfying (20).

These properties of F show that there exists a unique λ0 > 0 such that F (λ0) = λ0.
We see from Lemma 4.1 that λ0 = λ+ and thus F (λ+)/λ+ = 1, which leads us the
lemma.

The shape of the spectral function C(λ) is the following: 　
　

6

- λ

C(λ)

O λ+λ−

Fig. spectral function.
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5 Ground states and criticality

In this section, we construct harmonic functions (ground state) with respect to general
symmetric Markov processes including local and non-local types.

We define a Hµ-harmonic functions probabilistically.

Definition 5.1. A function h on Rd is said to be Hµ-harmonic in a domain U , if for any
relatively compact domain D ⊂ U ,

h(x) = Ex[exp(−Aµ
τD

)h(XτD
)], x ∈ D (22)

where τD is the first exit time from D. When h is Hµ-harmonic on Rd, we write Hµh = 0.

Next, we define the criticality of Schrödinger type operators.

Definition 5.2. (I) The operator Hµ is said to be subcritical, if Hµ possesses the minimal
positive Green function Gµ(x, y), that is,

Gµ(x, y) =

∫ ∞

0

pµ(t, x, y)dt < ∞, x 6= y.

(II) The operator Hµ is said to be critical, if Hµ does not have the Green function but
possesses the harmonic function.
(III) The operator Hµ is said to be supercritical if it is neither subcritical nor critical.

Now we introduce the notion of extended Schrödinger form. Assume that Hµ is sub-
critical or critical and let h be a positive Hµ-harmonic function. We denote by De(Eµ)
the family of m-measurable function u on Rd such that |u| < ∞ m-a.e. and there exists
an Eµ-Cauchy sequence {un} of functions in D(E) such that limn→∞ un = u m-a.e. We
call {un} as above an approximating sequence for u ∈ De(Eµ).

Note that the Dirichlet form (Eµ,h,D(Eµ,h)) associated with the Markov semigroup
P µ,h

t is given by

Eµ,h(u, v) = Eµ(hu, hv)

D(Eµ,h) =
{
u ∈ L2(Rd; h2dx) : hu ∈ D(Eµ)

}
.

Then we see that u ∈ De(Eµ) if and only if u
h
∈ De(Eµ,h), where De(Eµ,h) is the extended

Dirichlet space of (Eµ,h,D(Eµ,h)). Consequently, the Schrödinger form Eµ can be well
extended to De(Eµ) as a closed symmetric form; for u ∈ De(Eµ) and its approximating
sequence {un}

Eµ(u, u) = lim
n→∞

Eµ(un, un), u ∈ De(Eµ) (23)

(see [19, p.35]). We call (Eµ,De(Eµ)) the extended Schrödinger space. Note that in the
definition of De(Eµ), the condition for {un} being an Eµ-Cauchy sequence can be replaced
by

sup
n

Eµ(un, un) < ∞
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(cf. [40, Definition 1.6]).
If (Eµ,D(E)) is a subcritical Schrödinger form, that is, the associated operator Hµ be

subcritical, then (Eµ,De(Eµ)) becomes a Hilbert space by [19, Lemma 1.5.5]. In particular,
a positive Hµ-harmonic function h does not belong to De(Eµ). If (Eµ,D(E)) is a critical
Schrödinger form, that is, the associated operator Hµ be critical, its ground state h belongs
to De(Eµ) on account of [19, Theorem 1.6.3]. Noting that for µ = µ+ − µ− ∈ S∞ − S∞

Eµ(u, u) ≤ (1 + ‖G|µ|‖∞)E(u, u)

by Theorem 3.5, we see that De(Eµ) includes De(E).
There is a test for subcriticality of some Schrödinger type operators.
It was shown in [48] that the following condition is a necessary and sufficient one for

a operator Hµ being subcritical:

Theorem 5.3 ([48] Theorem 3.9). Let µ = µ+ − µ− ∈ S∞ − S∞. Then Hµ is subcritical
if and only if

inf

{
E(u, u) +

∫
Rd

u2dµ+ :

∫
Rd

u2dµ− = 1

}
> 1.

Remark 5.4. The left-hand-side of the above inequality is the bottom of spectrum of
the time-changed process with respect to µ− of the subprocess Mµ+

by the multiplicative

functional exp(−Aµ+

t ). This theorem characterize the subcriticality of Schrödinger type
operator by the bottom of spectrum of the time-changed process.

Recall that the operator Hλ+µ is not subcritical since

inf

{
E(u, u) + λ+

∫
Rd

u2dµ+ : λ+

∫
Rd

u2dµ− = 1

}
= 1.

For a non-negative bounded Borel function w 6≡ 0 with compact support, define ν =
λ+µ + wdx. We then see from [48] that Hν is subcritical and its Green function Gν(x, y)
is equivalent to G: there exist positive constants c, C such that

cG(x, y) ≤ Gν(x, y) ≤ CG(x, y) for x 6= y. (24)

Let Gν be the Green operator, Gνf(x) =
∫

Rd Gν(x, y)f(y)dy.

Lemma 5.5. For a positive function ϕ ∈ C0(Rd), Gνϕ belongs to De(Eν)

Proof. Let Gν
β be β-resolvent of Hν . Then Gν

βϕ belongs to D(E) and Gν
βϕ ↑ Gνϕ as

β → 0. Moreover, by (24)

Eν(Gν
βϕ,Gν

βϕ) ≤ Eν
β (Gν

βϕ,Gν
βϕ) = (ϕ,Gν

βϕ)

≤ (ϕ,Gνϕ) ≤ C(ϕ,Gϕ) < ∞,

which proves the lemma.
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Now we construct a Hλ+µ-harmonic function. We follow our paper [52]. Since the
embedding of De(E) to L2(µ) is compact. Then there exists a function u0 ∈ De(E) such
that u0 attains the infimum:

inf

{
E(u, u) + λ+

∫
Rd

u2dµ+ : u ∈ De(E), λ+

∫
Rd

u2dµ− = 1

}
= 1. (25)

Indeed, let {un} be a sequence of De(E) such that un converges to u0 ∈ De(E) in the sense
of E-weakly and 

∫
Rd

u2
ndµ− = 1, for any n,

lim
n→∞

{
E(un, un) + λ+

∫
Rd

u2
ndµ+

}
= 1.

We take a subsequence of {n} if necessary here. By the Banach-Steinhause theorem and
the assumption of the compact embedding from De(E) to L2(µ+), we find that

1 = lim inf
n→∞

{
E(un, un) + λ+

∫
Rd

u2
ndµ+

}
≥ E(u0, u0) + λ+

∫
Rd

u2
0dµ+ ≥ 1.

Moreover since the embedding from De(E) to L2(µ−) is compact, we have

1 = lim
n→∞

∫
Rd

u2
ndµ− =

∫
Rd

u2
0dµ−.

Therefore we know that the function u0 attains the infimum (25).

Let Mλ+µ+
be the subprocess of M by the multiplicative functional exp(−λ+Aµ+

t ).
Then the function u0 is the first eigenfunction corresponding to the generator of the time

changed process of Mλ+µ+
by Aλ+µ−

t . The time changed process is irreducible because∫
Rd Gλ+µ+

(x, y)µ−(dy) > 0. Hence u0 > 0 µ−-a.e by [15, Theorem 7.3].

Lemma 5.6. Let u0 be the function in (25). Then the measure u0µ
− is of finite energy

integral with respect to Eλ+µ+
.

Proof. Let f ∈ De(E). Then∫
Rd

f(x)u0(x)µ−(dx) ≤
(∫

Rd

u2
0(x)µ−(dx)

)1/2 (∫
Rd

f2(x)µ−(dx)

)1/2

,

and the right hand side is dominated by

CE(f, f)1/2 ≤ CEλ+µ+

(f, f)1/2

by Theorem 3.5.

The function u0 is also characterized by the equation:

E(u0, f) + λ+

∫
Rd

u0fdµ+ = λ+

∫
Rd

u0fdµ−, for all f ∈ De(E). (26)
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Hence we see from Lemma 5.6 that

Eλ+µ+

(u0, f) = λ+

∫
Rd

u0fdµ− = Eλ+µ+

(λ+Gλ+µ+

(u0µ
−), f),

and

u0(x) = λ+

∫
Rd

Gλ+µ+

(x, y)u0(y)dµ−(dy)

= Ex

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

]
, m-a.e.

Now we set

h(x) = Ex

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

]
. (27)

and prove that the function h is a bound continuous Hλ+µ-harmonic function. We remark
that h is equal to u0 q.e. and is strictly positive because Gλ+µ+

(x, y) > 0.

Lemma 5.7. The function h is finely continuous.

Proof. By the Markov property,

h(Xs) = EXs

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

]
= Ex

[∫ ∞

0

exp(−λ+Aµ+

t (θs))u0(Xt+s)dAλ+µ−

t (θs)
∣∣∣Fs

]
= exp(λ+Aµ+

s )Ex

[∫ ∞

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t

∣∣∣Fs

]
− exp(λ+Aµ+

s )

∫ s

0

exp(−λ+Aµ+

t )u0(Xt)dAλ+µ−

t .

Since the first term of right hand side is right continuous because of the right continuity
of Fs, we see that h is finely continuous by [19, Theorem A.2.7].

Note that if h(x) = u0(x) m-a.e., then h(x) = u0(x) q.e. by [19, Lemma 4.1.5]. Hence
[19, Theorem 4.1.2] proves the next lemma.

Lemma 5.8. The function h is strictly positive and satisfies

h(x) = Ex

[∫ ∞

0

exp(−λ+Aµ+

t )h(Xt)dAλ+µ−

t

]
(28)

for all x ∈ Rd.

Lemma 5.9. The function h is P λ+µ
t -excessive.
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Proof. Set Mt = Ex[
∫ ∞
0

exp(−λ+Aµ+

s )h(Xs)dAλ+µ−
s |Ft]. Then we had in the proof of

Lemma 5.7

exp(−λ+Aµ+

t )h(Xt) = Mt +

∫ t

0

exp(−λ+Aµ+

s )u0(Xs)dAλ+µ−

s .

Hence by Ito’s formula we obtain

exp(−λ+Aµ
t )h(Xt) = exp(λ+Aµ−

t )(exp(−λ+Aµ+

t )h(Xt))

= h(X0) +

∫ t

0

exp(λ+Aµ−

s )dMs −
∫ t

0

exp(−λ+Aµ
s )h(Xs)dAλ+µ−

s

+

∫ t

0

exp(−λ+Aµ+

s )h(Xs) exp(λ+Aµ−

s )dAλ+µ−

s

= h(X0) +

∫ t

0

exp(λ+Aµ−

s )dMs,

Taking the expectation, we know that

Ex[exp(−λ+Aµ
t )h(Xt)] = Ex[h(X0)] + Ex

[∫ t

0

exp(λ+Aµ−

t )dMs

]
.

Since the integrand in the second term is a martingale, we show that

Ex[exp(−λ+Aµ
t )h(Xt)] ≤ h(x).

We see from Lemma 5.9 that the h-transformed semigroup P λ+µ,h
t generates a h2m-

symmetric Markov process with the state space Sh = {x ∈ Rd : h(x) < ∞}. Let us denote

by Mλ+µ,h the Markov process generated by P λ+µ,h
t . Then because of non-subcriticality

of Hλ+µ, Mλ+µ,h is recurrent, in particular, conservative, P λ+µ,h
t 1 = 1, as a result, the

function h is P λ+µ
t -invariant:

P λ+µ
t h = h. (29)

Lemma 5.10. Finely continuous P λ+µ
t -excessive function is unique up to constant mul-

tiplication.

Proof. We follow the argument in [31, P.149, Theorem 3.4]. Let h, h′ be finely continuous

P λ+µ
t -excessive functions. Since

Ex

[
exp(−λ+Aµ

t )h(Xt)

(
h′

h

)
(Xt)

]
≤ h · h′

h
(x),

we have

Eλ+µ,h
x

[
h′

h
(Xt)

]
≤ h′

h
(x).
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Now for y ∈ Rd and εn → 0 as n → ∞, we put Uεn(y) = {z : |h(z) − h(y)| < εn}. Since
Uεn(y) is finely open, σUεn (y) < ∞, P λ+µ,h

x -a.s [19, Problem 4.6.3]. Denote σn = σUεn (y).
Replacing t by σn, we have

Eλ+µ,h
x

[
h′

h
(Xσn)

]
≤ h′

h
(x). (30)

Noting that the left hand side of (30) converges to h′

h
(y) as n → ∞, we obtain by Fatou’s

lemma

h′

h
(y) = Eλ+µ,h

x

[
lim inf
n→∞

h′

h
(Xσn)

]
≤ lim inf

n→∞
Eλ+µ,h

x

[
h′

h
(Xσn)

]
≤ h′

h
(x).

Since x and y are arbitrary, h′/h must be a constant function.

The next theorem is first obtained by Murata [28, Theorem 2.2] when the process M
is Brownian motion. Using a probabilistic argument, we extend the theorem to symmetric
Markov process satisfying our assumptions.

Theorem 5.11. For w ∈ C0(Rd) with w ≥ 0, w 6≡ 0, let ν = λ+µ + wdx. The function
h defined in (27) satisfies

h(x) =

∫
Rd

Gν(x, y)h(y)w(y)dy. (31)

Proof. Note h satisfies (25) and thus

Eν(h, f) =

∫
Rd

hfwdx, for any f ∈ De(Eν).

by the definition of the extended Schrödinger space. Since Gνϕ ∈ De(Eν) for any ϕ ∈
C0(Rd) by Lemma 5.5, we obtain, by substituting Gνϕ for f∫

Rd

h(x)ϕ(x)dx =

∫
Rd

h(x)w(x)Gνϕ(x)dx =

∫
Rd

Gν(hw)(x)ϕ(x)dx

and thus

h(x) =

∫
Rd

Gν(x, y)h(y)w(y)dy, m-a.e.

By the same argument as in lemma 5.7, in the equation above ”m-a.e. x” can be replaced
by ”any x”.
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Lemma 5.12. The function h is bounded.

Proof. Since h is finely continuous, we can find a compact set K such that h ≤ c on K.
Let ν = µ + IK(x)dx. Note that ν belongs to S∞. Theorem 5.11 says that h satisfies

h(x) =

∫
Rd

Gν(x, y)h(y)IK(y)dy.

Since Gν(x, y) is equivalent to G(x, y) by [48], it holds that

h(x) ≤ c

∫
Rd

Gν(x, y)IK(y)dy ≤ C ′
∫

Rd

G(x, y)IK(y)dy.

The right hand side of above inequality is bounded because IK(y)dy ∈ S∞.

Proposition 5.13. The function h is Hλ+µ-harmonic function; for any bounded domain
D

Ex[exp(−λ+Aµ
τD

)h(XτD
)] = h(x), x ∈ D.

Proof. Let
Mt = exp(−λ+Aµ

t )h(Xt).

Then Mt is a martingale. In fact, by the Markov property and (29)

Ex[Mt|Fs] = exp(−λ+Aµ
s )EXs [exp(−λ+Aµ

t−s)h(Xt−s)]

= exp(−λ+Aµ
t )h(Xs)

Hence we see that the right hand of (32) equals to exp(−λ+Aµ
s )h(Xs). On account of the

optional stopping theorem,

Ex[exp(−λ+Aµ
t∧τD

)h(Xt∧τD
)] = h(x), (32)

where D is a bounded domain of Rd.
On the other hand, by the definition of λ+

inf

{
Eλ+µ(u, u) : u ∈ C∞

0 (D),

∫
D

u2dx = 1

}
> 0.

Hence λ+µ is gaugeable on D , that is

sup
x∈D

Ex

[
exp(−λ+AτD

)
]

< ∞

(cf. [9],[53]). We then see from [9, Corollary 2.9] that

sup
x∈D

Ex

[
sup

0≤t≤τD

exp(−λ+Aµ
t )

]
< ∞. (33)
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Noting that ∣∣exp(−λ+At∧τD
)h(Xt∧τD

)
∣∣ ≤ ‖h‖∞

(
sup

0≤t≤τD

exp(−λ+Aµ
t )

)
, (34)

we have
lim
t→∞

Ex[exp(−λ+Aµ
t∧τD

)h(Xt∧τD
)] = Ex[exp(−λ+Aµ

τD
)h(XτD

)]

on account of the quasi-left continuity of M.

We often call the function h satisfying Hλ+µh = 0 “ground state”.

Lemma 5.14. The function h satisfies

h(x) = Ex [h(XτD
)] − λ+Ex

[∫ τD

0

h(Xs)dAµ
s

]
. (35)

Proof. Since h is Hλ+µ-harmonic, for a bounded domain D,

λ+Ex

[∫ τD

0

h(Xt)dAµ
t

]
= λ+Ex

[∫ τD

0

EXt

(
exp(−λ+Aµ

τD
)h(XτD

)
)
dAµ

t

]
.

By the Markov property the right hand side equals to

λ+Ex

[∫ τD

0

exp(λ+Aµ
t − λ+Aµ

τD
)h(XτD

)dAµ
t

]
= Ex

[
exp(−λ+Aµ

τD
)h(XτD

)
(
exp(λ+Aµ

τD
) − 1

)]
= Ex[h(XτD

)] − Ex

[
exp(−λ+Aµ

τD
)h(XτD

)
]
,

which implies (35).

6 Differentiability of spectral functions

6.1 Assumptions

To prove the differentiability of spectral functions, let us organaize assumptions. We
denote by h the ground state of Hλ+µ

Assumption 6.1. 　
(I) Assumption 2.1.
(II) Assumption 3.9.
(III) The function h is continuous.

If ground states of critical operator Hλ±µ belong to L2(m), we call it positive critical.
If the ground state does not belong to L2(m), we call it null-critical.

Indeed, the null-criticality plays crucial rule in the proof of the differentiability of
spectral functions. Moreover, we can prove that the spectral function is not differentiable
if Hλ±µ is positive critical.
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6.2 An extension of Oshima’s inequality

In this section, we prove a functional inequality for critical Schrödinger forms. This
inequality is regarded as a version of Oshima’s inequality and plays a crucial role for the
proof of the differentiability of C(λ).

Lemma 6.2. Let h be the Hλ+µ-harmonic function constructed in the previous section.

Then the h-transformed semigroup P λ+µ,h
t of P λ+µ

t has the strong Feller property.

Proof. We follow the argument in [16, Corollary 5.2.7]. Let f be a bounded Borel function
and {xn} a sequence so that xn → x as n → ∞. Recall that pλ+µ(t, x, y) is jointly
continuous ([2, Theorem 3.10]). Then by Fatou’s lemma and the continuity of h,

lim inf
n→∞

∫
Rd

1

h(xn)
pλ+µ(t, xn, y)h(y)(‖f‖∞ ± f(y))dy

≥
∫

Rd

1

h(x)
pλ+µ(t, x, y)h(y)(‖f‖∞ ± f(y))dy,

and thus the function,

x 7→
∫

Rd

1

h(x)
pλ+µ(t, x, y)h(y)(‖f‖∞ ± f(y))dy,

is lower semi-continuous. Note that P λ+µ,h
t is recurrent, in particular, conservative. Then∫

Rd

1

h(x)
pλ+µ(t, x, y)h(y)f(y)dy

=

∫
Rd

1

h(x)
pλ+µ(t, x, y)h(y)(‖f‖∞ + f(y))dy − ‖f‖∞

= −
∫

Rd

1

h(x)
pλ+µ(t, x, y)h(y)(‖f‖∞ − f(y))dy + ‖f‖∞,

and thus the function

x 7→
∫

Rd

1

h(x)
pλ+µ(t, x, y)h(y)f(y)dy,

is lower and upper semi-continuous.

Proposition 6.3. The h-transformed process Mλ+µ,h = (P λ+µ,h
x , Xt) is Harris recurrent,

that is, for a non-negative function f ,∫ ∞

0

f(Xt)dt = ∞ P λ+µ,h
x -a.s. (36)

whenever m({x : f(x) > 0}) > 0.
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Proof. Since P λ+µ,h
t generates an h2m-symmetric recurrent Markov process,

Px[σA ◦ θn < ∞, ∀n ≥ 0] = 1 for q.e. x ∈ Rd (37)

by [19, Theorem 4.6]. Moreover, since the Markov process Mλ+µ,h has the transition
density function

pλ+µ(t, x, y)

h(x)h(y)

with respect to h2m, (37) holds for all x ∈ Rd by [19, Problem 4.6.3]. Using Lemma 6.2,
(37), and [35, Chapter X, Proposition (3.11)], we see that Mλ+µ,h is Harris recurrent.

Theorem 6.4. There exist a positive function g ∈ L1(h2m) and a function ψ ∈ C0(Rd)
with

∫
Rd ψh2dx = 1 such that∫

Rd

|u(x) − h(x)L(
u

h
)|g(x)h(x)dx ≤ CEλ+µ(u, u)1/2, u ∈ D(Eλ+µ), (38)

where

L(u) =

∫
Rd

uψh2dx.

Proof. By Proposition 6.3, we can apply Oshima’s inequality in [29] to the Dirichlet
form (Eλ+µ,h,D(Eλ+µ,h)) satisfying the Harris recurrence condition; there exist a positive
function g ∈ L1(h2m) and a function ψ ∈ C0(Rd) with

∫
Rd ψh2dx = 1 such that∫

Rd

|u(x) − L(u)|g(x)h2(x)dx ≤ CEλ+µ,h(u, u)1/2, u ∈ D(Eλ+µ,h) (39)

where

L(u) =

∫
Rd

uψh2dx.

Substituting v/h for u in (39) together with the equality

Eλ+µ,h(v, v) = Eλ+µ(hv, hv),

we obtain the equality (38).

6.3 Proof of Differentiability of spectral functions

Before proving the differentiability of spectral function, we prepare a lemma relevant to
general regular Dirichlet forms.
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Lemma 6.5. Let X be a locally compact separable metric space, m a positive Radon
measure on X, and (E ,D(E)) a regular Dirichlet form on L2(X; m). Let {un} ⊂ D(E)
be a sequence with limn→∞ E(un, un) = 0 and limn→∞ un = 0 m-a.e. Then there is a
subsequence {unk

} such that limk→∞ unk
= 0 q.e.

Proof. Let g be a non-negative continuous function with compact support and define

Eg(u, u) = E(u, u) +

∫
X

u2gdm. (40)

Then (Eg,D(Eg)(= D(E))) becomes a transient Dirichlet form. Let u
(l)
n = ((−l) ∨ un) ∧

l, l = 1, 2, · · · . Then by the assumption limn→∞ Eg(u
(l)
n , u

(l)
n ) = 0 for any l. Hence the

0-order version of [19, Theorem 2.1.4] says that there exists a subsequence {u(l)
nk} of {u(l)

n }
such that limk→∞ u

(l)
nk = 0 Capg,(0)-q.e. Here CapE,(r) denotes the r-order capacity with

respect to (Eg,D(Eg)). Note that by [19, Theorem 2.1.6], Capg,(0)-q.e. is equivalent to
Capg,(1)-q.e. and Capg,(1)-q.e. is equivalent to Cap(1)-q.e. because E1(u, u) ≤ Eg

1 (u, u) ≤
(1 + ‖g‖∞)E1(u, u).

Therefore we see that limk→∞ u
(l)
nk = 0 q.e. This proves the lemma because l is arbitrary.

Next lemma implies that if C(λ) > 0, C(λ) is eigenvalue of −Hλµ.

Lemma 6.6 ([48, Lemma 4.3]). Let µ = µ+ − µ− ∈ K∞
d − K∞

d . Then for any λ > λ+

and λ < λ−, the negative spectrum of σ(Eλµ) consists of isolated eigenvalues with finite
multiplicities.

Proof. For β > 0, ε > 0 and γ > 0, let

E (1)(u, u) = Eλ+µ+

(u, u) − β

∫
Rd

u2dµ−
Rc − (λ+ − ε)

∫
Rd

u2dµ− + γ

∫
Rd

u2dx.

Taking a constant γ′ > 0 so small that

λ+ − ε

1 − γ′ ≤ λ+, γ′ <
γ

2
.

By Theorem 3.5,

β

∫
Rd

u2dµ−
Rc ≤ γ′

(
Eλ+µ+

(u, u) +

∫
Rd

u2dx

)
.

Since β

∫
Rd

u2dµ−
R is relative compact form with respect to E (1), the spectrum of Eλ+µ+

(u, u)−

(λ+ +β− ε)

∫
Rd

u2dµ− smaller than inf{E (1)(u, u)}−γ consists of isolated eigenvalue with

finite multiplicities by Lemma 1 in [27, 2.5.4]. Noting that

E (1)(u, u) ≥ Eλ+µ+

(u, u) − γ′
(
Eλ+µ+

(u, u) +

∫
Rd

u2dx

)
− (λ+ − ε)

∫
Rd

u2dµ− + γ

∫
Rd

u2dx

≥ (1 − γ′)

(
Eλ+µ+

(u, u) − λ+

∫
Rd

u2dµ−
)

+
γ

2

∫
Rd

u2dx

≥ γ

2

∫
Rd

u2dx,
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we see that inf(σ(E (1))) ≥ γ
2
. Hence any negative sepctrum of Eλ+µ+

(u, u) − (λ+ + β −

ε)

∫
Rd

u2dµ− is discrete because γ is arbitrary. Since β and ε is arbitrary, we attain the

lemma.

Theorem 6.7. Let µ = µ+ − µ− ∈ S∞ − S∞. If Hλ+µ is null critical, then the spectral
function C(λ) is differentiable.

Proof. We deal with the case of λ ≥ 0. First note that for λ > λ+, −C(λ) is the principal
eigenvalue of the operator Hλµ = H − λµ by Lemma 6.6 and thus C(λ) is differentiable
by the analytic perturbation theory [24, Chapter VII]. Hence it is enough to prove the
differentiability of C(λ) at λ = λ+. Furthermore, since C(λ) is convex by the definition,
we have only to prove the existence of a sequence {λn} such that dC(λn)/dλ ↓ 0 as
λn ↓ λ+.

By [24, p.405, Chapter VII (4.44)], we see

dC(λ)

dλ
= −

∫
Rd

u2
λdµ > 0, λ > λ+, (41)

where uλ is the L2-normalized eigenfunction corresponding to the eigenvalue −C(λ), that
is,

−C(λ) = Eλµ(uλ, uλ) = λ

∫
Rd

u2
λdµ + E(uλ, uλ). (42)

Neglecting the positive part µ+ of µ in the (42), we have

E(uλ, uλ) ≤ −C(λ) + λ

∫
Rd

u2
λdµ−.

Furthermore, it follows form (12) that the right hand side above is dominated by

−C(λ) + λεE(uλ, uλ) + λM(ε).

Let {λn} be a sequence with limn→∞ λn ↓ λ+. Substituting λn for λ in the equation above
and taking ε > 0 so small that λnε < 1, we have

E(uλn , uλn) ≤ −C(λn) + λnM(ε)

1 − λnε
,

and thus

lim sup
n→∞

E(uλn , uλn) =
λ+M(ε)

1 − λ+ε
< ∞ (43)

because C(λn) → 0 as n → ∞. Since by (43)

|Eλ+µ(uλn , uλn) + C(λn)| = |Eλ+µ(uλn , uλn) − Eλnµ(uλn , uλn)|

≤ (λn − λ+)

∫
Rd

u2
λn

dµ

≤ (λn − λ+)(‖G|µ|‖∞E(uλn , uλn)) −→ 0
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as n → ∞,
lim

n→∞
Eλ+µ(uλn , uλn) = 0. (44)

Let h is the Hλ+µ-harmonic function constructed in Section 5 and (Eλ+µ,h,D(Eλ+µ,h)) the
Dirichlet form generated by the h-transformed process. Then the equation (44) proves

lim
n→∞

Eλ+µ,h
(uλn

h
,
uλn

h

)
= 0. (45)

Let ψ and L(u) be the things in Theorem 38. Then since∣∣∣∣L(
uλn

h
)

∣∣∣∣ =

∫
Rd

uλn(x)ψ(x)h(x)dx

≤

√∫
Rd

u2
λn

dx

√∫
Rd

ψ2(x)h2(x)dx < ∞,

we may assume that L(uλn/h) converges to a certain constant C by taking a subsequence
of {λn} if necessary. In addition, since 6.4 says∫

Rd

|uλn − Ch|ghdx ≤
∫

Rd

|uλn − hL(
uλn

h
)|ghdx +

∫
Rd

|hL(
uλn

h
) − Ch|ghdx

≤ CEλ+µ(uλn , uλn)1/2 +

∫
Rd

|L(
uλn

h
) − C|gh2dx → 0,

we may assume that uλn → Ch m-a.e. Now recall that Hλ+µ is null critical if and only if
d ≤ 2α. Then the constant C must be equal to 0 because

1 = lim inf
n→∞

∫
Rd

u2
λn

dx ≥
∫

Rd

lim inf
n→∞

u2
λn

dx = C2

∫
Rd

h2dx,

and consequently
lim

n→∞
uλn = 0, m-a.e. (46)

Notice that Eλ+µ,h-q.e. is equivalent to E-q.e. Then combing (45) and (46) with lemma
6.5, we may assume that uλn converges to 0 q.e.

Since uλn is the eigenfunction corresponding to C(λn),

uλn = e−C(λn)tP λnµ
t uλn .

and

‖uλn‖∞ ≤ e−C(λn)t‖P−λnµ−

t ‖2,∞ ≤ ‖P−λ1µ−

t ‖2,∞ < ∞
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by [2, Theorem 6.1 (iii)]. Hence we have

lim sup
n→∞

∣∣∣∣∫
Rd

u2
λn

dµ

∣∣∣∣ ≤ lim sup
n→∞

∫
Rd

u2
λn

d|µ|

= lim sup
n→∞

( ∫
Rd

u2
λn

d|µ|R +

∫
Rd

u2
λn

d|µ|Rc

)
≤ lim sup

n→∞

∫
Rd

u2
λn

d|µ|R + lim sup
n→∞

‖G|µ|Rc‖∞E(uλn , uλn)

≤ ‖G|µ|Rc‖∞
λ+M(ε)

1 − λ+ε
.

By letting R to ∞, we complete the proof.

Remark 6.8. In the case that the symmetric Markov process M is recurrent, for exam-
ple 1 or 2-dimensional Brownian motion, symmetric α-stable process (d ≤ α) and 1 or
2-dimensional relativistic α-stable process and µ = −µ ∈ K∞

d , we can prove the differen-
tiability of spectral function by the exactly same as in [49].

6.4 Non-differentiability of spectral functions

When M is the Brownian motion and the potential µ is absolutely continuous with respect
to the Lebesgue measure, non-differentiability of spectral function was considered in [41].
The argument in [41, Theorem 2.1] can be adapted to prove non-differentiability of spectral
function.

Theorem 6.9. If Hλ+µ is positive critical, then C(λ) is not differentiable.

Proof. Note that the ground state h belongs to L2(m), that is, zero is an eigenvalue of
Hλ+µ. We normalize the function h as ‖h‖2 = 1. Let {uλn} be the sequence defined in the
proof of Theorem 6.7, that is, uλn is the L2(m)-normalized eigenfunction corresponding
with the eigenvalue λn (λn > λ+). Since {uλn} is bounded in E (α) and in L2(m), we may
suppose that

uλn → u0, weakly in E and in L2(m).

Moreover we know in the proof of Theorem 6.7 that

uλn → Ch, m-a.e.

Hence u0 = Ch, m-a.e., and thus the constant C is less than or equal to 1. Since for
λ > λ+,

−C(λ) ≤ E(h, h) + λ

∫
h2dµ

and

E(h, h) = −λ+

∫
Rd

h2dµ,
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we have
C(λ)

λ − λ+
≥ −

∫
h2dµ. (47)

Noting that there exists a constant θ ∈ (0, 1) such that

C(λ)

λ − λ+
= C ′(λ+ + θ(λ − λ+)).

by the mean value theorem, we can find a sequence {an} such that an → λ+ as n → ∞
and

lim sup
λ→λ+

C(λ)

λ − λ+
= lim

n→∞
C ′(an).

By Assumption 6.1,

lim
n→∞

C ′(an) = − lim
n→∞

∫
u2

an
dµ = −C2

∫
Rd

h2dµ.

Since h > 0 ∈ De(E) and (E ,De(E)) is Hilbert space, we know that

−
∫

Rd

h2dµ =
1

λ+
E(h, h) > 0.

Hence

lim sup
λ→λ+

C(λ)

λ − λ+
≤ −C2

∫
Rd

h2dµ ≤ −
∫

Rd

h2dµ.

On the other hand, by (47), we find that

lim inf
λ→λ+

C(λ)

λ − λ+
≥ −

∫
Rd

h2dµ.

Therefore

lim
λ→λ+

C(λ)

λ − λ+
= −

∫
Rd

h2dµ > 0.

7 Large deviation principle for additive functionals

The large deviation principle (LDP) for additive functionals is our motivation to prove
the differentiability of spectral functions.

Now we introduce the Gärtner-Ellis theorem. This part is due to [17]. We modified
to the continuous time. We put

Λt(λ) := log Ex

[
exp

(
−λ

Aµ
t

t

)]
.
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Assumption
For each λ ∈ R, the logarithmic moment generating function, defined as the limit

Λ(λ) := lim
t→∞

1

t
Λt(tλ)

exists as an extended real number. Further, the origin belongs to the interior of DΛ :=
{λ ∈ R : Λ(λ) < ∞}.

Definition 7.1. A convex function Λ : R → (−∞,∞] is essentially smooth if:
(I) Do

Λ is non-empty.
(II) Λ(·) is differentiable throughout Do

Λ.
(III) Λ(·) is steep, namely, lim

n→∞
|Λ′(λn)| = ∞ whenever {λn} is a sequence in Do

Λ con-

verging to a boundary point of Do
Λ.

If the spectral function becomes the logarithmic moment generating function, the
differentiability of spectral function claims essential smoothness because Λ(λ) is convex
and finite for all λ ∈ R.

Theorem 7.2 (Gärtner-Ellis theorem Theorem 2.3.6 [17]). The following estimate fol-
lows;

lim inf
t→∞

1

t
log Px

(
Aµ

t

t
∈ G

)
≥ − inf

θ∈G
I(θ)

lim sup
t→∞

1

t
log Px

(
Aµ

t

t
∈ F

)
≤ − inf

θ∈F
I(θ),

where I(θ) is the Legendre transform of C(λ), that is,

I(θ) = sup
λ∈R

{θλ − C(λ)}.

and G and F are open and closed set in R respectively.

This approach, that is, the differentiability of spectral function, may be unique because
it may be difficult to prove the differentiability of it.

Now the differentiability of logarithmic moment generating function is just sufficient
condition and not necessary condition for the LDP of additive functionals. There exist
an example that the LDP holds unless the logarithmic moment generating function is
differentiable. In §9, we will introduce it.

8 Examples

In this section, we would like to introduce some examples of symmetric Markov processes
which hold differentiability of spectral functions. In the sequel, the function h denote
the ground state of the critical Schrödinger operator Hλ+µ. In these examples, using the
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method in §4 and §5, we can construct the finely continuous and bounded ground state for
critical Schrödinger operator Hλ+µ. We have not introduced ways to prove the continuity
of h yet. There are differences among these processes each other.

The first example ([51]) is that the Markov process is the standard Brownian motion.
Since the Brownian motion has a continuous path with respect to times, we can apply
the local property. So in this case, using the local property of Hλ+µ, we can prove the
continuity of h. Also using the well-known Harnack inequality of harmonic functions, we
obtain the order of decay of h at infinity.

The second example ([52]) is that the Markov process is the symmetric α-stable pro-
cess. This process is a pure jump process. Since this process is non-local, we can not apply
the similar method ([51]) of the Brownian case to prove the continuity of h. Recently, the
Harnack inequality is studied for non-local type operator. By lemma 5.14 and [5] and the
Harnack inequality, we can obtain the continuity of h. Moreover there is an alternative
proof of the continuity of h, we will introduce it. Furthermore we also obtain the order
of decay of h by the Harnack inequality.

The third example ([54]) is that the Markov process is the relativistic α-stable process.
In this case, the process is also non-local. Readers may think that it can be used the
method for symmetric α-stable processes. We would like to emphasis to use the explicit
form of the Green function to prove the continuity of h for symmetric α-stable processes.
Since we do not know the explicit form of the Green function, we can not apply the same
argument for symmetric α-stable processes. Hence we develop a new method to prove
the continuity. If d is greater than 2, the process is transient. So there exists a minimal
Green function of this process. We note that the function h is bounded and P µ

t has strong

Feller property when µ ∈ K∞
d . Since the function h is bounded and P λ+µ

t -invariant, we
can prove the continuity of h.

8.1 Brownian motions

In this subsection, we refer to the paper [51]. If p(ξ) = 1
2
|ξ|2, the symmetric Markov

process M is called Brownian motion. The generator of this process is denoted by H = 1
2
∆.

In this case, we can extend the class of measure S∞ to K∞
d since it is known that S∞ is

identical to K∞
d . Here we only consider the case that µ = −µ ∈ K∞

d here.
It is well-known that if d ≥ 3, this is transient and if d ≤ 2, this is recurrent. If d ≥ 3,

the Green function is
G(x, y) = c(d)|x − y|2−d.

The Dirichlet form is

E (2)(u, v) =
1

2
D(u, v)

D(E (2)) = H1(Rd),

where D denotes the classical Dirichlet integral and H1(Rd) is the Sobolev space of order
1 ([19, Example 4.4.1]).

This case is local, so we can prove regularity of ground state using the well-known
method.
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Lemma 8.1. For µ ∈ K∞
d , there exists a positive continuous function such that Hλ+µh =

0.

Proof. Let λn be the bottom of spectrum of Hλ+µ for the Dirichlet problem on B(n).
Since 0 = −C(λ+) < λn+1 < λn, Hλ+µ is subcritical on B(n). Let Gn denotes the Green
operator of Hλ+µ on B(n). We define a function hn by hn(x) = cnG

n+1IAn(x), where IAn

is the indicator function of An(= B(n + 1) \ B(n)) and cn is the normalized constant,
cn = (Gn+1IAn(0))−1. Then hn is a harmonic function on B(m), m < n. Indeed, for
x ∈ B(m)

Ex[exp(λ+Aµ
τm

)hn(Bτm)] = cnEx[exp(λ+Aµ
τm

)Gn+1IAn(Bτm)]

= cnEx

[
exp(λ+Aµ

τm
)EBτm

[ ∫ τn+1

0

exp(λ+Aµ
t )IAn(Bt)dt

]]
,

where τm = inf{t > 0 : Bt 6∈ B(m)}. By the strong Markov property, the right hand side
is equal to

cnEx

[ ∫ τn+1◦θτm

0

exp(λ+(Aµ
τm

+ Aµ
t ◦ θτm)IAn(Bt+τm)dt

]
= cnEx

[ ∫ τn+1◦θτm+τm

τm

exp(λ+Aµ
t )IAn(Bt)dt

]
.

Noting that τn+1 ◦ θτm + τm = τn+1 and
∫ τm

0
exp(λ+Aµ

t )IAn(Bt)dt = 0, we see that the last
term is equal to hn(x). Therefore hn satisfies (22) for G = B(m).

Now by [6, Corollary 7.8], {hn} is uniformly bounded and equicontinuous on B(1),
so we can choose a subsequence of {hn} which converges uniformly on B(1). We denote

the subsequence by {h(1)
n }. Next take a subsequence {h(2)

n } of {h(1)
n } so that it converges

uniformly on B(2). By the same procedure, we take a subsequence {h(m+1)
n } of {h(m)

n } so

that it converges uniformly on B(m + 1). Then the function, h(x) = limn→∞ h
(n)
n (x), is a

desired one.

Lemma 8.2. Let µ ∈ K∞
d . Then the number λ+ is characterized as a unique positive

number such that

inf

{
1

2
D(u, u) : λ+

∫
Rd

u2dµ = 1

}
= 1. (48)

Proof. Define

F (λ) = inf

{
1

2
D(u, u) : λ

∫
Rd

u2(x)µ(dx) = 1

}
,

Note that F (λ) = F (1)/λ. Then F (1) is nothing but the bottom of spectrum of the time
changed process by the additive functional Aµ

t ([46, Lemma 3.1]). We see by [47, Lemma
3.1] that 1-resolvent Rµ

1 of the time changed process satisfies Rµ
11 ∈ C∞(Rd). Hence it

follows from [37, Corollary 3.2] and [47, Corollary 2.2] that F (1) > 0. Consequently we
see that λ0 = F (1) is a unique positive constant such that F (λ0) = 1. Lemma 3.2 leads
us that λ0 = λ+.
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Corollary 8.3. For µ ∈ K∞
d , the operator Hλ+µ is critical.

Proof. Let F (λ) be the function in the proof of Lemma 8.2. Then it is known in [49,
Theorem 3.9] that the operator Hλµ is subcritical if and only if F (λ) > 1. Hence by
Lemma 8.1 and Lemma 8.2, Hλ+µ is critical.

Lemma 8.4. A positive Hλ+µ-harmonic function h satisfies

P λ+µ
t h(x) ≤ h(x).

Proof. Let x ∈ B(m). By Definition 3.1, h satisfies

h(x) = Ex[exp(λ+Aµ
τn

)h(Bτn)]

for any n > m. Here τn is the first exit time from B(n). It follows from the Markov
property that

Ex[exp(λ+Aµ
t )h(Bt); t < τm]

= Ex[exp(λ+Aµ
t ) exp(λ+Aµ

τn
◦ θt)h(Bτn ◦ θt); t < τm]

= Ex[exp(λ+Aµ
τn

)h(Bτn); t < τm] ≤ h(x).

Hence we have

P λ+µ
t h(x) = lim

m→∞
Ex[exp(λ+Aµ

t )h(Bt); t < τm] ≤ h(x).

In this case, for µ ∈ K∞
d the assumption 3.9 is always satisfied.

Lemma 8.5. If µ ∈ K∞
d , then the embedding of H1

e (Rd) to L2(µ) is compact.

Proof. Let {un} be a sequence in H1
e (Rd) such that

un → u0 ∈ H1
e (Rd), D-weakly.

Rellich’s theorem says that for any compact set K ⊂ Rd

unIK → u0IK L2(m)-strongly. (49)

Now, for ϕ ∈ C∞
0 (Rd) with ϕ = 1 on B(R)∫

Rd

|un − u0|2µR(dx) =

∫
Rd

|unϕ − u0ϕ|2µR(dx)

≤ εD(unϕ − u0ϕ, unϕ − u0ϕ) + M(ε)

∫
Rd

|unϕ − u0ϕ|2dx

by (12), and the second term converges to 0 as n → ∞ by (49). Since

sup
n

D(unϕ − u0ϕ, unϕ − u0ϕ) < ∞
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by the principle of uniform boundedness and ε is arbitrary, un converges to u0 in L2(µR).
Moreover, since by Theorem 3.5,∫

Rd

|un − u0|2µ(dx) =

∫
Rd

|un − u0|2µR(dx) +

∫
Rd

|un − u0|2µRc(dx)

≤
∫

Rd

|un − u0|2µR(dx) + ‖GµRc‖∞D(un − u0, un − u0),

lim sup
n→∞

∫
Rd

|un − u0|2µ(dx) ≤ ‖GµRc‖∞ sup
n

D(un − u0, un − u0).

Hence according to the definition of K∞
d the right hand side converges to 0 by letting R

to ∞. Therefore {un} is an L2(µ)-convergent sequence.

Now we consider asymptotic of h as |x| → ∞. Let w be a positive continuous function
with compact support. Suppose that 0 ∈ supp[w] ⊂ B(R). By Theorem 5.11 and the
continuity of h

c

∫
B(R)

Gν(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

Gν(x, y)w(y)dy,

and so by the inequality (24),

c

∫
B(R)

G(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

G(x, y)w(y)dy.

The Harnack inequality to {G(x, ·)}{x∈B(R)c} says that for any x ∈ B(R)c and y ∈ supp[w]

cG(x, y) ≤ G(x, 0) ≤ CG(x, y).

Therefore we see that

cG(x, 0) ≤ h(x) ≤ CG(x, 0) for x ∈ B(R)c,

namely,
c

|x|d−2
≤ h(x) ≤ C

|x|d−2
for x ∈ B(R)c. (50)

Hence we obtain the following theorem.

Theorem 8.6. The operator Hλ+µ is null ciritical if and only if d ≤ 4.

Therefore if d ≤ 4, we obtain the differentiability of spectral functions.
Finally in this subsection, we introduce the concrete example.

Example 8.7 ([49, Example 3.1]). Let d = 1 and µ(dx) = δ0 ∈ K∞
1 . It is known that

C(λ) =

{
λ2

2
λ ≥ 0

0 λ < 0.

Hence the Legendre transform of C(λ) is

I(θ) =

{
θ2

2
θ ≥ 0

∞ θ < 0.
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8.2 Symmetric α-stable processes

In this subsection, we refer to the paper [52]. If p(ξ) equals 1
2
|ξ|α (0 < α ≤ 2), the

symmetric Markov process M is called the symmetric α-stable process. The generator
of this process is denoted by H = −1

2
(−∆)α/2. Recall that if α = 2, the process is the

Brownian motion. In this case, we can prove the continuity of h for µ = µ+ − µ− ∈
K∞

d −K∞
d .

If α < d, the process Mα is transient. If α ≥ d, the process Mα is recurrent. Let
p(t, x, y) be the transition density function of Mα. If α < d, the Green function is

G(x, y) =

∫ ∞

0

p(t, x, y)dt = C(d, α)|x − y|α−d,

where C(d, α) = 21−απ−d/2Γ(d−α
2

)Γ(α
2
)−1.

When Mα is a symmetric α-stable process in Rd with d > α, it is well-known that the
following 3G-inequality holds:

G(x, y)G(y, z)

G(x, z)
≤ C(G(x, y) + G(y, z)).

So we find that K∞
d = S∞. Therefore in this case, we can prove the differentiability of

spectral function when α < d ≤ 2α and µ = µ+ − µ− ∈ K∞
d −K∞

d .
For a measure µ, the 0-potential of µ is defined by

Gµ(x) =

∫
Rd

G(x, y)µ(dy).

Let Pt be the semigroup of Mα,

Ptf(x) =

∫
Rd

p(t, x, y)f(y)dy = Ex[f(Xt)].

Let (E (α),D(E (α))) be the Dirichlet form generated by Mα. For 0 < α < 2, it is given by

E (α)(u, v) =
1

2
A (d, α)

∫∫
Rd×Rd\4

(u(x) − u(y))(v(x) − v(y))

|x − y|d+α
dxdy

D(E (α)) =

{
u ∈ L2(Rd) :

∫∫
Rd×Rd\4

(u(x) − u(y))2

|x − y|d+α
dxdy < ∞

}
,

where

A (d, α) =
α2d−1Γ(α+d

2
)

πd/2Γ(1 − α
2
)

([19, Example 1.4.1]).
Let (E (α),De(E (α))) denote the extended Dirichlet form of (E (α),D(E (α))) ([19, p.36]).

Then De(E (α)) is a Hilbert space with inner product E (α) because Mα is transient ([19,
Theorem 1.5.3]).

For symmetric α-stable processes, we can prove that for µ ∈ K∞
d the embedding of

De(E (α)) to L2(µ) is compact. Therefore we can except (I) from Assumption 3.9. Let us
prove it.
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Lemma 8.8. Let ϕ ∈ C∞
0 (Rd) and u ∈ De(E (α)). Then uϕ ∈ De(E (α)) and there exists a

constant C depending only on ϕ such that

E (α)(uϕ, uϕ) ≤ CE (α)(u, u). (51)

Proof. By the definition of E (α) and the inequality “(a + b)2 ≤ 2(a2 + b2)”,

E (α)(uϕ, uϕ)

=
1

2
A (d, α)

∫∫
Rd×Rd\4

(u(x)ϕ(x) − u(y)ϕ(y))2

|x − y|d+α
dxdy

≤ A (d, α)

∫∫
Rd×Rd\4

u(x)2(ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy

+A (d, α)

∫∫
Rd×Rd\4

ϕ(y)2(u(x) − u(y))2

|x − y|d+α
dxdy

= A (d, α)((I) + (II)).

Since
(II) ≤ ‖ϕ‖2

∞E (α)(u, u), (52)

we only consider the term (I).
Take R so large that supp ϕ ⊂ B(R − 1). Then (I) equals to∫∫

B(R)×B(R)\4

u(x)2(ϕ(x) − ϕ(y))2

|x − y|d+α
dxdy +

∫
B(R)

( ∫
B(R)c

u(x)2ϕ(x)2

|x − y|d+α
dy

)
dx

+

∫
B(R)c

u(x)2

(∫
B(R−1)

ϕ(y)2

|x − y|d+α
dy

)
dx

= (III) + (IV) + (V).

Since |ϕ(x) − ϕ(y)|2 ≤ C|x − y|2, we have

(III) ≤
∫

B(R)

(∫
B(R)∩{|x−y|≤1}

+

∫
B(R)∩{|x−y|≥1}

u(x)2(ϕ(x) − ϕ(y))2

|x − y|d+α
dy

)
dx

≤ C

∫
B(R)

u(x)2

(∫
B(R)∩{|x−y|≤1}

dy

|x − y|d+α−2

)
dx

+ C

∫
B(R)

u(x)2

( ∫
B(R)∩{|x−y|≥1}

dy

|x − y|d+α

)
dx

≤ C

∫
B(R)

u(x)2

(∫ 1

0

r1−αdr

)
dx + C

∫
B(R)

u(x)2

(∫ ∞

1

r−(α+1)dr

)
dx

≤ C

∫
B(R)

u(x)2dx.
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By Hölder’s inequality the right hand side is less than

C

(∫
B(R)

u(x)pdx

)2/p( ∫
B(R)

1dx

)1/q

≤ C

( ∫
B(R)

u(x)pdx

)2/p

,

where p = 2d
d−α

and 2/p + 1/q = 1. Using Sobolev’s inequality for order α/2 ([19, p.44,

(1.5.20)]), we can see that (III) is dominated by CE (α)(u, u).
The term (IV) is dominated by

C

∫
B(R)

u(x)2

( ∫ ∞

R

r−(1+α)dr

)
dx ≤ C

∫
B(R)

u(x)2dx,

and by the same reason as above

(IV) ≤ CE (α)(u, u).

Finally, we will consider (V). Since |x − y| ≥ 1 on (x, y) ∈ B(R)c × B(R − 1),

(V) ≤
∫

B(R)c

u(x)2

(∫
B(R−1)

ϕ(y)2dy

)
dx ≤ C

∫
Rd

u(x)2dx ≤ CE (α)(u, u).

Hence
(I) ≤ CE (α)(u, u). (53)

Lemma 8.9. Let un ∈ De(E (α)), n = 1, 2, . . ., be a sequence such that un converges to u
weakly in De(E (α)). Then for any set A of finite Lebesgue measure, unIA converges to uIA

strongly in L2(m).

Proof. The proof of this lemma is just the argument in [26, Theorem 8.6].
First note that the semigroup Pt of Mα can be uniquely extended to a linear operator

on De(E (α)) and that

‖u − Ptu‖2 ≤
√

tE (α)(u, u)1/2, u ∈ De(E (α))

(see [19, Lemma 1.5.4]). We then have

‖(un − u)IA‖2 ≤ ‖(un − Ptun)IA‖2 + ‖(Ptun − Ptu)IA‖2 + ‖(Ptu − u)IA‖2

≤ 2
√

t sup
n

E (α)(un, un) + ‖(Ptun − Ptu)IA‖2. (54)

By the Sobolev inequality, un is a bounded sequence in Lp(m), 1/p = 1/2 − α/2d
and thus there exists an Lp(m)-weakly convergent subsequence. Using the Banach-Saks
Theorem, as in the proof of [19, Lemma 3.2.2], we can show that the entire sequence
un converges to u weakly in Lp(m). Using the Sobolev inequality again, we see that the
integral kernel pt(x, y) of Pt is bounded. Consequently, pt(x, ·) ∈ Lq(m) (1/q + 1/p = 1),
‖Ptun‖∞ is bounded in n, and Ptun converges to Ptu m-a.e. Hence, by the dominated
convergence theorem the last term of (54) converges to zero as n → ∞. This lemma
follows by letting n → ∞ and t → 0 in (54).
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For a measure µ, let us denote

µR(·) = µ(· ∩ B(R)), µRc = µ(· ∩ B(R)c).

Theorem 8.10. If µ ∈ K∞
d , then the embedding of De(E (α)) into L2(µ) is compact.

Proof. First note that the embedding of De(E (α)) into L2(µ) is bounded by Theorem 3.5.
Let {un} be a sequence in De(E (α)) such that un → u weakly in De(E (α)). Then Lemma
8.9 says that for R > 0

unIB(R) → uIB(R) L2(m)-strongly. (55)

Now fix a function ϕ ∈ C∞
0 (Rd) with ϕ = 1 on B(R). Then by (12)∫

Rd

|un − u|2µR(dx) =

∫
Rd

|unϕ − uϕ|2µR(dx)

≤ εE (α)(unϕ − uϕ, unϕ − uϕ) + M(ε)

∫
Rd

|unϕ − uϕ|2dx.

The second term of the right hand side converges to 0 as n → ∞ by (55), and Lemma 8.8
prove

sup
n

E (α)(unϕ − uϕ, unϕ − uϕ) < ∞.

Hence the sequence {un} is L2(µR)-convergent to u because ε is arbitrary.
Moreover, since by Theorem 3.5,∫

Rd

|un − u|2µ(dx) =

∫
Rd

|un − u|2µR(dx) +

∫
Rd

|un − u|2µRc(dx)

≤
∫

Rd

|un − u|2µR(dx) + ‖GµRc‖∞E (α)(un − u, un − u),

we have

lim sup
n→∞

∫
Rd

|un − u|2µ(dx) ≤ lim sup
n→∞

‖GµRc‖∞E (α)(un − u, un − u).

By the definition of K∞
d the right hand side converges to 0 as R → ∞, which proves that

{un} is an L2(µ)-convergent sequence to u.

To prove the continuity of h, we use a theorem of Bass and Levin [4].

Theorem 8.11 (cf. [4]). If h is a bounded (−∆)
α
2 -harmonic function on a ball B(x0, 2),

then h is Hölder continuous in B(x0, 1); there exists c1 and β > 0 such that

|h(x) − h(y)| ≤ c1‖h‖∞|x − y|β, x, y ∈ B(x0, 1).
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By lemma 5.14, since Ex[h(XτD
)] is (−∆)

α
2 -harmonic on D, it is continuous on D by

Theorem 8.11, thus it is enough to prove the continuity of Ex

[∫ τD

0
h(Xt)dAµ

t

]
. We put

f(x) = Ex

[∫ τD

0
h(Xt)dAµ

t

]
. Although f(x) is continuous by [5, Proposition 6.6], we give

an alternative proof of the continuity of f(x).
Set

kD(x, z) = Ex[G(z,XτD
)].

Lemma 8.12. Let K be a compact subset of D. Then it follows that

sup
x∈Rd, z∈K

kD(x, z) ≤ cd

dist(K,Dc)d−α
.

Proof. For z ∈ K and XτD
∈ Dc

dist(K,Dc) ≤ |z − XτD
|.

Hence the lemma follows from G(z, y) = c(d)
|z−y|d−α .

Let kD
z (x), z ∈ K, denotes kD(x, z). It is clear that kD

z (x) is harmonic on D and
bounded on Rd. Thus by theorem 8.11, we have the next lemma.

Lemma 8.13. Let D′ be a domain with K ⊂ D′ ⊂ D̄′ ⊂ D. For all x, y ∈ D′, z ∈ K,
there exist c1 > 0 and β > 0 such that

|kD
z (x) − kD

z (y)| ≤ c1 sup
x∈Rd

|kD
z (x)||x − y|β.

Let us define a Kernel GD
l , l > 0, by

GD
l (x, z) = G(x, z) ∧ (cdl) − kD

z (x).

Lemma 8.14. Let K and D′ be the sets in Lemma 8.13. For any z ∈ K, x, y ∈ D′

|GD
l (x, z) − GD

l (y, z)| ≤ c(l,K)|x − y|β.

Proof. By the definition of GD
l ,

|G(x, z) ∧ (cdl) − G(y, z) ∧ (cdl)|

= cd

∣∣∣∣ 1

|x − z|d−α
∧ l − 1

|y − z|d−α
∧ l

∣∣∣∣
= cd

∣∣∣∣ 1

|x − z|d−α ∨ 1
l

− 1

|y − z|d−α ∨ 1
l

∣∣∣∣
= cd

∣∣∣∣∣ |y − z|d−α ∨ 1
l
− |x − z|d−α ∨ 1

l(
|x − z|d−α ∨ 1

l

) (
|y − z|d−α ∨ 1

l

)∣∣∣∣∣
≤ l2cd

∣∣∣∣|y − z|d−α ∨ 1

l
− |x − z|d−α ∨ 1

l

∣∣∣∣
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Let F (t) = td−α ∨ 1
l
, t ≥ 0. Then since

|F (a) − F (b)| ≤ sup
t∈[a,b]

|F ′(t)||a − b|,

the last term is less than or equal to

c(l) ||y − z| − |x − z|| ≤ C(l)|y − x|.

Hence lemma 8.13 leads us to the lemma.

Lemma 8.15. The function GD(hµ)(x) can be approximated by GD
l (hµ)(x);

lim
l→∞

sup
x∈D

|GD(hµ)(x) − GD
l (hµ)(x)| = 0.

Proof. By Dynkin’s formula, we have

|GD(hµ)(x) − GD
l (hµ)(x)|

=

∣∣∣∣∫
D

G(x, z)h(z)µ(dz) −
∫

D

(G(x, z) ∧ cdl)h(z)µ(dz)

∣∣∣∣ .

Let αl = (1
l
)1/(d−α). Then the right hand side is equal to∣∣∣∣∫

{|x−z|≤αl}∩D

G(x, z)h(z)µ(dz) −
∫
{|x−z|≤αl}∩D

(cdl)h(z)µ(dz)

∣∣∣∣
≤ 2

∫
{|x−z|≤αl}∩D

G(x, z)h(z)µ(dz)

≤ 2‖h‖∞ sup
x∈D

∫
{|x−z|≤αl}∩D

G(x, z)µ(dz).

Since µ ∈ Kd,

lim
l→∞

sup
x∈D

∫
{|x−z|≤αl}∩D

G(x, z)µ(dz) = 0.

Therefore the proof is completed.

Lemma 8.16. For any compact set K ⊂ D

|GD
l (hµ)(x) − GD

l (hIKµ)(x)| ≤ cdl‖h‖∞µ(D \ K).

Proof. By the definition of GD
l , we have

|GD
l (hµ)(x) − GD

l (hIKµ)(x)| ≤
∫

D\K
GD

l (x, z)h(z)µ(dz)

≤ cdl‖h‖∞µ(D \ K).
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Lemma 8.17. The function GD
l (hIKµ)(x) is Hölder continuous with order β;

|GD
l (hIKµ)(x) − GD

l (hIKµ)(y)| ≤ c(l,K)‖h‖∞|x − y|β, x, y ∈ D′,

where β is the constant which appears in Theorem 8.11.

Proof. Using lemma 8.14, we have

|GD
l (hIKµ)(x) − GD

l (hIKµ)(y)| ≤
∫

|GD
l (x, z) − GD

l (y, z)|h(z)IK(z)µ(dz)

≤ c1(l,K)‖h‖∞|x − y|βµ(K)

Putting c(l,K) = c1(l,K)µ(K), we obtain this lemma.

Proposition 8.18. The function h is continuous.

Proof. Let D be relatively compact domain. Since Ex[h(XτD
)] is (−∆)

α
2 -harmonic on D,

it is continuous on D by theorem 8.11. On account of Lemma 5.14, we have only to deal
with GD(hµ)(x)(= Ex[

∫ τD

0
h(Xt)dAµ

t ]).
First note ∣∣GD(hµ)(x) − GD(hµ)(y)

∣∣
≤

∣∣GD(hµ)(x) − GD
l (hµ)(x)

∣∣
+

∣∣GD
l (hµ)(x) − GD

l (hIKµ)(x)
∣∣ +

∣∣GD
l (hIKµ)(x) − GD

l (hIKµ)(y)
∣∣

+
∣∣GD

l (hIKµ)(y) − GD
l (hµ)(y)

∣∣ +
∣∣GD

l (hµ)(y) − GD(hµ)(y)
∣∣ .

By lemma 8.15, for any ε > 0 there exists l0 ∈ N such that

l ≥ l0 =⇒ sup
x∈D

∣∣GD(hµ)(x) − GD
l (hµ)(x)

∣∣ ≤ ε

5
(56)

Next, let {Kr}r>0 be a increasing sequence of relatively compact open subset of D such
that Kr ↑ D as r → ∞. By lemma 8.16, for any ε > 0 there exists a r0 ∈ N such that

r ≥ r0 =⇒ sup
x∈D

|GD
l (hµ)(x) − GD

l (hIKrµ)(x)| <
ε

5
. (57)

Finally, by Lemma 8.17, for any ε > 0 there exists δ > 0 such that for all x, y ∈ D′

|x − y| ≤ δ =⇒ |GD
l (hIKµ)(x) − GD

l (hIKµ)(y)| ≤ ε

5
. (58)

Combining (56), (57) and (58), we see that for any ε > 0 there exists δ > 0 such that for
all x, y ∈ D′ with |x − y| ≤ δ,∣∣GD(hµ)(x) − GD(hµ)(y)

∣∣ ≤ ε.

Since D and D′ are arbitrary, the function h is continuous on Rd.
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Now we consider asymptotic of h as |x| → ∞. Let w be a positive continuous function
with compact support. Suppose that 0 ∈ supp[w] ⊂ B(R). By Theorem 5.11 and the
continuity of h

c

∫
B(R)

Gν(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

Gν(x, y)w(y)dy,

and so by the inequality (24),

c

∫
B(R)

G(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

G(x, y)w(y)dy.

The Harnack inequality to {G(x, ·)}{x∈B(R)c} says that for any x ∈ B(R)c and y ∈ supp[w]

cG(x, y) ≤ G(x, 0) ≤ CG(x, y).

Therefore we see that

cG(x, 0) ≤ h(x) ≤ CG(x, 0) for x ∈ B(R)c,

namely,
c

|x|d−α
≤ h(x) ≤ C

|x|d−α
for x ∈ B(R)c. (59)

The equation (59) implies the following theorem.

Theorem 8.19. The operator Hλ+µ is null critical if and only if α < d ≤ 2α.

Therefore if α < d ≤ 2α and µ = µ+ − µ− ∈ K∞
d −K∞

d , we obtain the differentiability
of spectral functions.

Now we introduce a concrete example.

Example 8.20 ([50, Example 5.5], [20]). Let d = 1 and α > 1. Then M is recurrent
and λ+ = 0. When µ = −δ0, the Dirac measure at the origin, µ belongs to K∞

1 and the
corresponding additive functional is identical to the local time at the origin. For λ > 0,
the principal eigenvalue of 1

2
(−∆)α/2 − λδ0 is calculated in [40]:

C(λ) =


(

21/α

α sin ( π
α)

) α
α−1

λ
α

α−1 λ > 0

0 λ ≤ 0.

So the Legendre transform of C(λ) is

I(θ) =

{
(α−1)(α−1)

2

(
sin π

α

)α
θα x > 0
0 x ≤ 0.
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8.3 Relativistic α-stable processes

In this subsection, we refer to the paper [45]. If M has a symbol (|ξ|2+m2/α)α/2−m (m >
0), the symmetric Markov process M is called a relativistic α-stable process. The generator
of this process is denoted by H = m− (−∆ + m2/α)α/2. Since it is non-local, this process
is a pure jump process. We denote by M(α),r. Let (R(α),D(R(α))) be the Dirichlet form
associated with M(α),r. By [19, Example 1.4.1], it is denoted by

R(α)(u, v) =

∫
Rd

|û(ξ)||v̂(ξ)|((|ξ|2 + m2/α)α/2 − m)dξ

D(R(α)) =

{
u ∈ L2(Rd) :

∫
Rd

| ˆu(ξ)|2((|ξ|2 + m2/α)α/2 − m)dξ < ∞
}

,

where û(ξ) =
∫

Rd eix·ξu(x)dx is the Fourier transform of u. Since the symbol p(ξ) satisfies

p(ξ) ∼ c(d, α,m)|ξ|2 as |ξ| → 0 (c(d, α,m) is constant),

where a(x) ∼ b(x) x → ∞ (resp. x → 0) means that

lim
x→∞

a(x)

b(x)
= 1,

(
resp. lim

x→0

a(x)

b(x)
= 1

)
.

Then we find that M(α),r is transient if and only if d > 2 by [19]. So in the case of M(α),r,
transience and recurrence are equivalent to the case of Brownian motion.

In Ryznar [36], they decided the Lévy measure for M(α),r so by [19, Example 1.4.1],
we know that

R(α)(u, v) =
1

2
c(d, α)

∫∫
Rd×Rd\4

(u(x) − u(y))(v(x) − v(y))

|x − y|d+α
ψ(m1/α|x − y|)dxdy

where

ψ(r) =
I(r)

I(0)
, I(r) =

∫ ∞

0

s
d+α

2
−1e−

s
4
− r2

s ds. (60)

Let φ(λ) be the Laplace exponent of the relativistic α-stable subordinator Tt, that is,
φ(λ) = (λ + m2/α)α/2 − m and

E [exp(−λTt)] = exp(−tφ(λ)).

Since φ(λ) is a complete Bernstein function, φ(λ) is represented by

φ(λ) = a + bλ +

∫ ∞

0

(1 − e−λt)µ(dt), ∀λ > 0,

where µ is a σ-finite measure on (0,∞) satisfying∫ ∞

0

(t ∧ 1)µ(dt) < ∞,
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[cf. [21]]. It is clear that if φ(λ) is relativistic α-stable subordinator,

a = lim
λ→0

φ(λ) = 0, b = lim
λ→∞

φ(λ)

λ
= 0.

Since b = 0 and limλ→∞ φ(λ) = ∞, we must have µ((0,∞)) = ∞, and φ(λ) satisfies

φ(λ) ∼ c1λ, λ → 0

φ(λ) ∼ c2λ
α/2, λ → ∞.

So using Theorem 3.1 and Theorem 3.3 in [32], we know that the asymptotic behavior of
G(x, y) as follows;

Lemma 8.21.

G(x, y) ∼ C1(d, α)|x − y|α−d, |x − y| → 0 (61)

G(x, y) ∼ C2(d, α)|x − y|2−d, |x − y| → ∞. (62)

Note that the Kato class Kd associated with M(α),r is equivalent to the one associated
with the standard stable processes by (61).

Now we concern with the property of Kato class.

Lemma 8.22. Let G(x, y) = G(|x−y|) be the Green function of the process M(α),r. Then
there exits a constant b > 1 such that

lim sup
r→0

G(br)

G(r)
< 1.

Proof. Let b > 1. Since G(r) ∼ c(d)rα−d as r → 0,

G(br)

G(r)
=

G(br)

c(d)(br)α−d
· c(d)rα−d

G(r)
· bα−d ∼ bα−d.

Hence

lim sup
r→0

G(br)

G(r)
= bα−d < 1.

By Lemma 8.22, we can confirm that Proposition 3.3 holds in this case.
Now we prove the continuity of h.

Proposition 8.23. For µ ∈ Kd, P µ
t is strong Feller semigroup, that is, P µ

t maps Bb to
Cb.
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Proof. We follow the method of the Chung and Zhao [14].
Since the semigroup P µ

t maps Bb to Bb on account of [2, Theorem 6.1] and the unperturbed
semigroup Pt has strong Feller property, it is sufficient to prove that for f ∈ Bb and
0 < δ < t, Pδ(P

µ
t−δf)(x) converges uniformly to P µ

t f(x) as δ → 0.
By proposition 3.3, if µ = µ+ − µ− ∈ Kd − Kd, then for sufficiently small t > 0, we

can take
sup
x∈Rd

Ex[A
|µ|
t ] := α < 1.

K’hasminskii’s lemma tells us that

1 ≤ sup
x∈Rd

Ex[exp(A
|µ|
t )] ≤ 1

1 − α
.

Using the proposition 3.3 again, we find that

lim
t→0

sup
x∈Rd

Ex[exp(A
|µ|
t )] = 1. (63)

By the Markov property, for 0 < δ < t

PδP
µ
t−δf(x) = Ex

[
EXδ

[
exp(−Aµ

t−δ)f(Xt−δ)
]]

= Ex [exp (−Aµ
t + Aµ

δ ) f(Xt)]

Hence we have by Cauchy-Schwarz inequality,

|P µ
t f(x) − PδPt−δf(x)| ≤ Ex

[
exp(−Aµ

t )| exp(A
|µ|
δ ) − 1|

]
‖f‖∞

≤ Ex [exp(−2Aµ
t )]1/2 Ex

[
exp(2A

|µ|
t ) − 1

]1/2

This converges to zero uniformly in all x by (63). We obtain this lemma.

From the argument in §5, we can construct a finely continuous bounded ground state
h. By Proposition 8.23, we obtain the following proposition.

Proposition 8.24. The function h is continuous.

Proof. Since P µ
t does not possess the Green function, h-transformed semigroup P µ,h

t does
not possess one, too. On account of the excessiveness of h, we know that P µ,h

t generates
the Markov process. The Markov process is recurrent because of no existence of Green
function. So it is conservative. For any t > 0, we know that

P µ,h
t 1 = 1 ⇐⇒ 1

h
P µ

t h = 1.

Hence we obtain
P µ

t h = h.

Since h is bounded and µ ∈ Kd,α, we know that h is continuous by Proposition 8.23.
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Now we state the asymptotic behavior of the function h at infinity. For a non-negative
bounded Borel function w 6≡ 0 with compact support, define ν = µ + wdx. Then we get
the following equality similarly;

h(x) =

∫
Rd

Gν(x, y)h(y)w(y)dy. (64)

Lemma 8.25. There are positive constants C1, C2 and R > 0 such that

C1

|x|d−2
≤ h(x) ≤ C2

|x|d−2
, |x| > R.

Proof. Let w 6≡ 0 be a positive continuous function with compact support. Suppose that
0 ∈ supp[w] ⊃ B(R). Then by (64) and the continuity of h,

c

∫
B(R)

Gν(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

Gν(x, y)w(y)dy.

Since we know that
Gν(x, y) ∼ G(x, y), for x 6= y

on account of [47], we have

c

∫
B(R)

G(x, y)w(y)dy ≤ h(x) ≤ C

∫
B(R)

G(x, y)w(y)dy.

Since {G(x, ·)}x∈B(R)c is harmonic on supp[w], the Harnack inequality [43] to {G(x, ·)}x∈B(R)c

says that for any x ∈ B(R)c and y ∈ supp[w]

cG(x, y) ≤ G(x, 0) ≤ CG(x, y).

Therefore we see that

C1G(x, 0) ≤ h(x) ≤ C2G(x, 0), for x ∈ B(R)c

namely,
C1

|x|d−2
≤ h(x) ≤ C2

|x|d−2
, for x ∈ B(R)c.

Theorem 8.26. If d = 3, 4 and µ = µ+ − µ− ∈ S∞ − S∞, the Schrödinger type operator
Hλ+µ is null critical.

Therefore if d = 3, 4, we obtain the differentiability of spectral functions.
Now we check the relation between the spectral function and the logarithmic moment

generating function.
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Lemma 8.27. Let J(dx) be the Lévy measure of M(α),r. Then J(dx) is exponentially
localized, that is there exists a positive constant δ such that∫

|x|>1

eδ|x|J(dx) < ∞

Proof. By [36] or [12], we know that

J(dx) =
c(d, α)

|x|d+α
ψ(m1/α|x|)dx,

where ψ(r) is defined in (60). Since ψ(m1/α|x|) ∼ e−m1/α|x|(1+(m1/α|x|) d+α−1
2 ) as |x| → ∞

(cf. [12]), taking δ < m1/α, we have∫
|x|>1

eδ|x|J(dx) = c(d, α)

∫
|x|>1

e(δ−m1/α)|x|ψ(m1/α|x|)
|x|d+α

dx

≤ C

∫ ∞

1

e(δ−m1/α)r(1 + m1/αr)
d+α−1

2 r−1−αdr < ∞.

The proof is completed.

Using the argument in [46], we have the following proposition.

Proposition 8.28. Let µ be a signed measure which both positive and negative parts
belong Kato class Kd,α. Then it holds that

C(λ) = lim
t→∞

1

t
Ex[exp(−λAµ

t )].

Using the Gärtner-Ellis theorem [17, Theorem 2.3.6] and Theorem 2.1, we obtain the
Corollary 2.2.

Finally, we introduce a way to construct an example.
From now on, we follow the method of Shiozawa [40]. Suppose that d = 1 and 1 < α ≤ 2.
Let Hλδ0 = (−∆ + m2/α)α/2 − m − λδ0, where δ0 is the Dirac measure at 0.

We state the method to calculate the spectral function (or the principal eigenvalue of
−Hλδ0) C(λ) for λ > 0. Let Gβ be the β-resolvent of M(α),r,

Gβ(x, y) =
1

π

∫ ∞

0

cos {(x − y)z}
β + {(z2 + m2/α)α/2 − m}

dz.

Moreover, in generally, the resolvent GC(λ) satisfies

h(x) = λ

∫
R

GC(λ)(x, y)h(y)µ(dy),

where h is the ground state of C(λ). So when λµ is λδ0, we know that

h(x) = λGC(λ)(x, 0)h(0).
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Hence
λGC(λ)(0, 0) = 1.

Thus we find that the spectral function C(λ) is the solution of the following equation:

(
GC(λ)(0, 0) =

) 1

λ
=

1

π

∫ ∞

0

1

C(λ) + {(z2 + m2/α)α/2 − m}
dz.

If we are able to solve the equation, we obtain the rate function I(θ) by Legendre trans-
form. Remark that for λ ≤ 0, C(λ) becomes 0 (cf. [48]). Since the Dirac measure (at 0)
δ0 corresponds to the local time (at 0) l0(t), we can establish the large deviation principle
for the local time l0(t).

9 Remark

In this section, we would like to point out that the differentiability of spectral function is
just sufficient condition not necessary condition to hold LDP.

We introduce a counter-example. When M is the d-dimensional Brownian motion
d ≥ 5 and µ = µ+ − µ− ∈ K∞

d − K∞
d , the Schrödinger type operator Hλ±

are positive
critical. Hence the spectral function C(λ) is not differentiable. But in [49, Theorem 2.4 ,
Theorem 2.5], Takeda prove the LDP for Aµ

t in wider class with respect to µ.

Theorem 9.1 (Theorem 2.4, Theorem 2.5 [49]). Let I(θ) be the Legendre transform of
C(λ), that is,

I(θ) = sup
λ∈R

{θλ − C(λ)}.

(I) Let µ = µ+ − µ− ∈ Kd −Kd,loc. Then for any open set G

lim inf
t→∞

1

t
log Px

(
Aµ

t

t
∈ G

)
≥ − inf

θ∈G
I(θ).

(II) Let µ = µ+ − µ− ∈ Kd −Kd. Then for any closed set F

lim sup
t→∞

1

t
log Px

(
Aµ

t

t
∈ F

)
≤ − inf

θ∈F
I(θ).
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