
Scaling limit of successive approximations for
w′ = −w2 and its consequences on the theories of
random sequential bisections and height of binary

search trees

Tetsuya Hattori
Mathematical Institute, Graduate School of Science, Tohoku University,

Aoba-ku, Sendai 980–8578, Japan

E-mail: hattori@math.tohoku.ac.jp

Hiroyuki Ochiai

Graduate School of Mathematics, Nagoya University,

Chikusa-ku, Nagoya 464–8602, Japan

E-mail: ochiai@math.nagoya-u.ac.jp

ABSTRACT

We prove existence of scaling limits of sequences of functions defined by the recursion
relation w′

n+1(x) = −wn(x)2. Namely, wn approach the exact solution as n → ∞ in
asymptotically conformal ways, wn(x) � qnw̄(qnx), for a sequence of numbers {qn}. We
also discuss the implications of the results in terms of random sequential bisections of a
rod and binary search trees.
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1 Introduction and main results.

A solution of a linear differential equation has no singularities at regular points of the
equation. On the other hand, a solution of a non-linear differential equation without
singularities may have a singularity. Such a singularity may change its position among
solutions with different initial conditions, hence is called a moving singularity. Let us
consider a simplest example of such differential equations

dw

dx
(x) = −w(x)2. (1)

While the equation (1) has no singularities, its solution

w(x) =
1

x − C
, (2)

where C is an arbitrary constant, has a pole at x = C. Due to translational invariance of
(1), without loss of generality we may choose C = 0 and consider the solution w(x) = 1/x
in the following. Equivalently, we may choose the boundary condition at infinity as

w(x) = x−1 + o(x−2), x → ∞. (3)

Among possible ways of constructing solutions, let us consider the method of successive
approximation (iteration by integration). We obtain a sequence wn, n = 0, 1, 2, · · ·, of
functions defined recursively, by

dwn+1

dx
(x) = −wn(x)2, x � 0, n = 0, 1, 2, · · · , (4)

or, equivalently,

wn+1(x) =

∫ ∞

x

wn(y)2 dy, x � 0, n = 0, 1, 2, · · · , (5)

with an initial approximation

w0(x) = x−1 + o(x−2), x → ∞. (6)

Successive approximation (5) gives a sequence of functions converging to an exact solution
1/x of the differential equation (1).

For a solution without singularities, or in a domain where a solution is regular, the
successive approximation converges uniformly to the exact solution on compact sets. In
a neighborhood of a singularity of the exact solution ‘uniform convergence’ is obviously
impossible, and we need a framework for discussing the speed of convergence there. Here
we adopt renormalization group picture, and formulate our results in terms of scaling limits.
To be specific, we define the scaling limit of the sequence of functions wn, n = 0, 1, 2, · · ·,
as a bounded function defined by

w̄(x) = lim
n→∞

q−1
n wn(q−1

n x), (7)

for some sequence of positive numbers qn, n = 0, 1, 2, · · ·, which diverges to ∞ as n → ∞.
Note that the scaling factor for x and the scaling factor for wn should be equal for the
present problem, because wn(x) ≈ x−1 for very large n. Also, to have a bounded limit w̄,
qn should diverge like wn(0), hence we shall, for simplicity, put qn = wn(0) in the following.
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Let W be a set of continuous functions w̄ : [0,∞) → R, satisfying w̄(0) = 1 and
asymptotic behavior as in (6), and define R : W → W by

R(w̄)(x) =
1

r

∫ ∞

x/r

w̄(y)2 dy, where r =

∫ ∞

0

w̄(y)2 dy. (8)

Note that the definition of W implies that r in (8) is finite, hence w̄ ∈ W implies R(w̄) ∈ W.
For w̄0 ∈ W, define a sequence of functions w̄n ∈ W, n = 1, 2, 3, · · ·, by

w̄n+1 = R(w̄n), n = 0, 1, 2, · · · . (9)

Comparing (5) and (8) we see that if we put

w̄0(x) = q−1
0 w0(q

−1
0 x), x � 0, with q0 = w0(0), (10)

then for n = 1, 2, · · ·,
w̄n(x) = q−1

n wn(q−1
n x), with qn = wn(0), (11)

and

rn =

∫ ∞

0

w̄n(y)2 dy (12)

satisfying

rn =
qn+1

qn
. (13)

Therefore the existence of scaling limit for wn is equivalent to the existence of lim
n→∞

w̄n.

The sequence {w̄n} is uniformly bounded (in fact, |w̄n(x)| � w̄n(0) = 1 for n � 1),

and (9) implies

∣∣∣∣dw̄n+1

dx
(x)

∣∣∣∣ � 1

r2
n

w̄2
n(

x

rn

) � 1

r2
n

for n � 1, hence the Ascoli–Arzelà Theorem

implies that if the sequence {r−2
n } is bounded, then {w̄n} is relatively compact in the

topology of uniform convergence on [0,∞). To go further, we will below work in a complex
analytic class of functions, to ensure that the scaling limit actually exists.

To our knowledge, the problem of existence and properties of scaling limits for successive
approximations to differential equations with moving singularities has not been studied or
even noticed, though the recursion (4) has attracted attention [6]. A motivation of the
present study is to shed first light on this potentially interesting, but somehow so far
overlooked, problem.

The main results and the organization of the present paper are as follows. Denote by
C a set of entire functions w̄ : C → C, with w̄(0) = 1, whose coefficients in the Maclaurin
series have alternating signs;

w̄(z) =

∞∑
k=0

(−1)kakz
k, ak � 0, k = 0, 1, 2, · · · , (with a0 = 1),

positive on positive real axis, and asymptotic behavior in the positive real direction as in
(6). In Section 2 we prove the following.

Theorem 1 Let w̄0 ∈ C and w̄n, n = 0, 1, 2, · · ·, be a sequence defined recursively by (9).
Then for each n, w̄n are analytically continued to C and w̄n ∈ C holds. Furthermore, if the
sequence (12) converges to a number greater than 1:

r = lim
n→∞

rn > 1, (14)
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then w̄n converges uniformly on any compact sets in C to an entire function

w̄(z) =

∞∑
k=0

(−1)kαkz
k (15)

defined by

α0 = 1, αk =
1

krk+1

k∑
j=1

αk−jαj−1, k = 1, 2, 3, · · · . (16)

w̄ also satisfies

w̄(x) =
1

r

∫ ∞

x/r

w̄(y)2 dy, x � 0, and

∫ ∞

0

w̄(y)2 dy = r. (17)

Theorem 1 gives, through the correspondence (11), a sufficient condition for a sequence of
successive approximations {wn} to have a scaling limit and its explicit form in terms of the
Taylor coefficients αk . In Section 3 and Section 4, we discuss detailed properties of αk, such
as asymptotics in k, and r dependences. (See, in particular, Theorem 7 and Theorem 11.)

Theorem 1 says that we have a family of possible scaling limit functions parametrized by
‘the scaling factor’ r of (14). Then it is of interest to know whether, given r, there exists an
initial approximation w0 satisfying (6), such that the sequence of successive approximations
has a scaling limit with the scaling factor r. The following examples give affirmative
answers. For b > 2, consider

w0(x) =
1

x
(1 − e−x) − 1

xb
γ(b, x), x � 0, (18)

where γ(b, x) =

∫ x

0

yb−1e−ydy is the incomplete gamma function of first kind. Note that

w0(x) = x−1 + O(x−b), x → ∞. (19)

Let ρ be the unique positive solution to a transcendental equation

2e log ρ = ρ < e. (20)

To be explicit, ρ = −2eW (
−1

2e
) = 1.2610704868 · · ·, where W is the Lambert W function,

defined as an inverse function of z = WeW .

Theorem 2 Let 2 < b <
1

log ρ
= 4.31107040700 · · ·, and let wn, n = 0, 1, 2, · · ·, be a

sequence defined recursively by (5), with w0 as in (18). Then the scaling limit (7) exists
and satisfies (15) with (16) and (17), with

r = lim
n→∞

qn+1

qn
> 1 (21)

given by r = r(b), where

r(b) =

(
b

2

)1/(b−1)

. (22)
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Note that ρ is the supremum of the function r(b), and that for 2 � b � 1

log ρ
, r(b) is

increasing in b, with r(2) = 1 and r(
1

log ρ
) = ρ.

Theorem 2 proves that for any r satisfying 1 < r < ρ, there exists an initial approxi-
mation w0 satisfying (6), such that the sequence of successive approximations has a scaling
limit with r being the parameter of (14).

To prove Theorem 2, we need to prove existence of the limit (21) (and that it is given
by (22)) for the specific examples given by (18). Then we can apply Theorem 1 to conclude
Theorem 2. To prove that the limit (21) exists, we develop in Section 5 a monotonicity
argument for propagating single layer solutions to a non-linear non-local recursion. Put

Ω = {f : [0,∞) → [0, 1] |
non-increasing, right continuous, f(0) = 1, lim

t→∞
f(t) = 0} . (23)

For f ∈ Ω define R1(f) : [0,∞) → [0,∞) by R1(f)(0) = 1 and

R1(f)(t) =
1

t

∫ t

0

f(s)f(t − s) ds, t > 0 . (24)

Obviously, R1(f) ∈ Ω. We prove the following in Section 5.

Theorem 3 Let b > 2 and r = r(b) be as in (22). Define a sequence of functions fn,
n = 0, 1, 2, · · ·, recursively by f0 = fb,− ∈ Ω, where

fb,−(t) = max{1 − tb−1, 0}, t � 0, (25)

and fn+1 = R1(fn), n = 0, 1, 2, · · ·. Then the following hold.

(i) For each t � 0, fn(rnt), n = 0, 1, 2, · · ·, is non-decreasing, hence there exists a func-
tion f̃ : [0,∞) → [0, 1] such that

lim
n→∞

fn(rnt) = f̃(t), t � 0, (26)

for which the following dichotomy, depending on b, holds: Either

(a) f̃(t) = 1, t � 0, or,

(b) f̃(t) is integrable:

Q :=

∫ ∞

0

f̃(t) dt < ∞. (27)

(ii) If in addition b <
1

log ρ
, then f̃(t) < 1, t > 0, namely, the latter in the above

dichotomy holds.

Theorem 3 essentially says that {r(b)n} is the correct scaling sequence for 2 < b <
1

log ρ
(see

below). It turns out that {r(b)n} is a wrong scaling sequence for b >
1

log ρ
(see Theorem 16

in Section 6).
The sequence {fn} in Theorem 3 is related to the sequence {wn} defined by (5) through

Laplace transform. Note that (18) has an expression

w0(x) =

∫ ∞

0

e−xt fb,−(t) dt, x � 0, (28)

where fb,− is as in (25).
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Lemma 4 Let f0 ∈ Ω and

w0(x) =

∫ ∞

0

e−xtf0(t) dt, x � 0, (29)

and let wn, n = 0, 1, 2, · · ·, be a sequence defined recursively by (5). Then each wn has an
expression

wn(x) =

∫ ∞

0

e−xtfn(t) dt , x � 0, (30)

with fn ∈ Ω satisfying
fn+1 = R1(fn), n = 0, 1, 2, · · · . (31)

Proof. Define fn ∈ Ω, n = 0, 1, 2, · · ·, recursively by (31), and put

w̃n(x) =

∫ ∞

0

e−xtfn(t) dt , x � 0, n = 0, 1, 2, · · · . (32)

If we can prove that w̃n = wn for all n, the proof of Lemma 4 is complete. Since this holds
by definition for n = 0, it suffices to prove that w̃n satisfies the same recursion relation (5)

as wn. But this is easy to see by calculating

∫ ∞

x

dy

∫ ∞

0

du

∫ ∞

0

dv e−y(u+v) fn(u) fn(v) in

two ways using Fubini’s Theorem. �

Proof of Theorem 2 assuming Theorem 3. Let b and {wn} be as in the assumptions of The-
orem 2, and put Qn = qn/rn = wn(0)/rn, n = 0, 1, 2, · · ·. Then noting the correspondence

(28) and Lemma 4, we have

∫ ∞

0

fn(rnt) dt = Qn. Since Theorem 3 implies that the inte-

grand is pointwise non-decreasing in n, Qn is non-decreasing, and the monotone convergence

Theorem implies lim
n→∞

Qn = Q. Therefore, the limit lim
n→∞

qn+1

qn

= lim
n→∞

r
Qn+1

Qn

= r exists, and

Theorem 1, with the correspondence (10) and the explicit form (28), implies the existence
of the scaling limit (7) for the choice (18), with all the consequences in Theorem 1. �

We have no analogous results to Theorem 3(ii) for b � 1

log ρ
. Also, possibility of scaling

limits with r � ρ are not contained in Theorem 2. Concerning these points, the following
extreme case turns out to be of particular interest. Put

w0(x) =
1

x
(1 − exp(−x)), x � 0. (33)

Note that w0(x) − x−1 is exponentially small at x → ∞. Note also that

1

x
(1 − e−x) =

∫ ∞

0

e−xt(1 − F0(t)) dt (34)

with

F0(x) =

{
0, 0 � x < 1,
1, x � 1 .

(35)
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Theorem 5 Let wn, n = 0, 1, 2, · · ·, be a sequence defined recursively by (5), with w0 as
in (33). If a limit (21) exists with qn = wn(0), then the scaling limit (7) exists with r = ρ,
and satisfies (15) with (16) and (17).

A proof of Theorem 5 in Section 6 uses a completely different approach from those for
Theorem 3, and is based on a probabilistic argument for random bisection of a rod and
binary search trees [3, 5, 11, 10]. See Section 6, in particular, (81), (82), and (84), for
details on the implications of Theorem 5 on these subjects.

Theorem 5 (or Theorem 1) reduces the problem of convergence of a series of functions
to that of a series of numbers, hence necessary numerical checks are simpler. Numerical
calculations suggest that with the choice (33), qn+1/qn in fact decreases in n, hence (21) is
likely to hold. Thus we conjecutre that the scaling limit exists for {wn} defined recursively
by (5) with w0 as in (33). The numerical results further suggests that (27) actually fails
for this choice. We give details of numerical results in Appendix.

We note that a result similar to Theorem 5 holds also for (18) with b � 1

log ρ
, as a

corollary to Theorem 5 and Theorem 2, using a monotonicity Lemma 12 in Section 5. See
Theorem 16 in Section 6. Thus our results suggest that r = ρ is the upper bound of possible
r.
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2 Scaling limit.

Here we prove Theorem 1.
First we prove by induction that w̄n ∈ C for all n = 0, 1, 2, · · ·. Assume that w̄n ∈ C for

a non-negative integer n. Positivity on x > 0 and w̄n+1(x) = x−1 + o(x−2), x → ∞, follows
directly from the recursion (9) with (8) and w̄n(x) = x−1 + o(x−2). Rewrite the recursion
as

w̄n+1(x) = 1 − 1

rn

∫ x/rn

0

w̄n(y)2 dy, x � 0 . (36)

The integrand in the last term is entire by induction hypothesis, hence we can analytically
continue w̄n+1 to the whole complex plane as an entire function, using this expression.
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w̄n+1(0) = 1 also follows from (36). For a non-negative integer n, put

w̄n(z) =

∞∑
k=0

(−1)kān,kz
k, z ∈ C. (37)

Substituting this in (36) we find ān+1,0 = 1 and

ān+1,k =
1

krk+1
n

k∑
j=1

ān,k−jān,j−1 (� 0), k = 1, 2, 3, · · · , n = 0, 1, 2, · · · . (38)

Thus by induction, w̄n ∈ C for all n.
Now we assume all the assumptions in Theorem 1, and prove the following (39) and

(40):

There exsits c > 0 such that the set of entire functios {w̄n | n = 0, 1, 2, · · ·}
is uniformly bounded on {z ∈ C | |z| � c}. (39)

lim
n→∞

ān,k = αk, k = 0, 1, 2, · · · , (40)

where αk is defined by (16). Ascoli–Arzelà–Montel–Vitali Theorem will then imply that
w̄n(z) converges uniformly to w̄(z) of (15) on |z| � c. The recursion (36) with (14) then
implies that w̄n actually converges uniformly to w̄ on any compact sets as n → ∞, which
further implies

w̄(x) = 1 − 1

r

∫ x/r

0

w̄(y)2 dy, x � 0.

w̄ is a limit of non-negative functions on x � 0, hence is non-negative there, so that this inte-
gral equation implies square integrability of w̄ on [0,∞), hence in particular, lim

x→∞
w̄(x) = 0,

and consequently (17) holds. Positivity follows on x � 0, because of analyticity.
We are left with proving (39) and (40). To prove (39), put

a = 1 + max{sup
n�1

2

r2
n

, max
|z|�1

|w̄0(z) − 1|
|z| }

which exists (is finite) by (14) and the assumption w̄0 ∈ C. Then a − 2

r2
n

� 1 for all n,

which further implies that there exists c, satisfying

0 < c < 1 and
2

r2
n

+
2a2c2

3r4
n

� a, n = 0, 1, 2, · · · .

We now prove by induction that for n = 0, 1, 2, · · ·,

|w̄n(z) − 1| � a|z|, |z| � c. (41)

This holds for n = 0 by the definition of a and c. Assume that (41) holds for a non-negative
integer n. Then (36) implies

|w̄n+1(z) − 1| � 1

rn

∫ |z|/rn

0

w̄n(y)2 dy � 2

rn

∫ |z|/rn

0

(1 + (1 − w̄n(y))2) dy � a |z|, |z| � c,
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hence (41) holds also for n + 1, and by induction, for all n. This proves (39).
Finally, we prove (40). Let us introduce a notation which we use in the rest of this

section. For r > 0, let Mr be a map on a space of infinite sequences

Mr : a = {ak | k = 0, 1, 2, · · ·} �→ Mr(a) = {Mr(a)k | k = 0, 1, 2, · · ·}

defined by Mr(a)0 = 1 and

Mr(a)k =
1

krk+1

k∑
j=1

ak−jaj−1 , k = 1, 2, 3, · · · . (42)

Comparing with (38), we have

ān+1 = Mrn(ān), n = 0, 1, 2, · · · , (43)

where we put ān = {ān,k | k = 0, 1, 2, · · ·}. Also, the defining equation (16) of α(r) = α =
{αk | k = 0, 1, 2, · · ·} can be written in a concise form

Mr(α(r)) = α(r). (44)

For sequences a = {ak | k = 0, 1, 2, · · ·} and b = {bk | k = 0, 1, 2, · · ·} we write a � b if
ak � bk, k = 0, 1, 2, · · ·. Obviously we have, for a non-negative sequence a,

Mr(a) � Mr′(a), if 0 < r � r′. (45)

Let γ = {γk | k = 0, 1, 2, · · ·}, be a non-negative sequence satisfying γ0 = 1, and for r > 0
define ã(r)n = {ã(r)n,k | k = 0, 1, 2, · · ·}, n = 0, 1, 2, · · ·, by

ã(r)n = Mn
r (γ), n = 0, 1, 2, · · · . (46)

By (45), we see that ã(r)n is decreasing in r.

Lemma 6 For r > 0 and for any γ in (46), ã(r)n,k = α(r)k if n � k � 0, where α(r) is
as in (44).

Proof. By definition, ã(r)n,0 = α(r)0 = 1, n = 0, 1, 2, · · ·, hence in particular the claim holds
for n = 0 . Assume that the claim holds for some n and for all k satisfying 0 � k � n .
Then for 1 � k � n + 1 we have

ã(r)n+1,k =
1

krk+1

k∑
j=1

ã(r)n,k−jã(r)n,j−1 =
1

krk+1

k∑
j=1

α(r)k−jα(r)j−1 = α(r)k,

hence the claim holds for n + 1 . �

Let us proceed with the proof of (40), and let 0 < ε < 1 . The assumption (14) implies
that there exists n0 such that (1 − ε)r � rn � (1 + ε)r, n � n0, which further implies, by
induction, with (43) and (45),

Mn
(1+ε)r(ān0) � ān0+n = Mn

r (ān0) � Mn
(1−ε)r(ān0), n = 0, 1, 2, · · · . (47)
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Put γ = ān0 in (46). Comparing (47) with (46) we have,

ã(r(1 + ε))n = Mn
r(1+ε)(ān0) � ān+n0 � Mn

r(1−ε)(ān0) = ã(r(1 − ε))n, n = 0, 1, 2, · · · .
With Lemma 6 we further have,

α(r(1 + ε))k � ān+n0,k � α(r(1 − ε))k, n � k � 0,

Hence

α(r(1 + ε))k � lim inf
n→∞

ān,k � lim sup
n→∞

ān,k � α(r(1 − ε))k, k = 0, 1, 2, · · · .

Noting that 0 < ε < 1 is arbitrary and α(r)k is a polynomial in r−1, we have (40).
�

3 Bounds on the Taylor coefficients of scaling limit.

Here we consider bounds and asymptotics of αk, the Taylor coefficients (modulo signs) of
the scaling limit w̄.

Write the r dependences of the coefficients αk in (16) explicitly, as αk = α(r)k. In this
section, we prove the following.

Theorem 7 For r > 1, there exist constants Cr, C ′
r, Dr, D′

r, depending only on r, such
that

α(r)k � exp(− log r

log 2
(k + 1) log(k + 1) − Cr (k + 1) + Dr), k = 0, 1, 2, . . . , (48)

and

α(r)k � exp(− log r

log 2
(k + 1) log(k + 1) − C ′

r (k + 1) + D′
r), k = 0, 1, 2, · · · . (49)

The bounds in Theorem 7 decays faster than exponentially, hence the upper bound (49)
implies that the radius of convergence of (15) is ∞, which gives a direct proof that w̄ is
entire.

The upper bound (49) in Theorem 7 is easy. In fact,

α(r)k � e− log2 r (k+1) log(k+1), k = 0, 1, 2, · · · , (50)

can be proved by induction on k, as follows.
α(r)0 = 1 implies (50) for k = 0 . Assume that (50) holds for k < k0 . Then (16), and a

change of summation variable j =
1

2
(k0 + 1) − i =: M − i imply

αk0 =
1

k0rk0+1

k0∑
j=1

exp(− log r

log 2
((k0 − j + 1) log(k0 − j + 1) + j log j)

=
1

rk0+1(2M − 1)

M−1∑
i=−M+1

exp(− log r

log 2
((M + i) log(M + i) + (M − i) log(M − i)))

� 1

rk0+1
exp(− log r

log 2
× 2M log M)

= exp(− log r

log 2
(k0 + 1) log(k0 + 1)),
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where we also used an elementary bound (see Proposition 8 below)

(M + i) log(M + i) + (M − i) log(M − i) � 2M log M, |i| < M.

This proves (50) for k = k0, hence (50) is proved by induction.
To go further, we first recall the following elementary facts. (Proofs will be omitted,

being elementary.)

Proposition 8 Let a > 0, M � 1, ε > 0, and Λ > M−1. Then the following hold.

(i)

∫ ∞

0

e−Max2

dx =
1

2

√
π

Ma
.

(ii) 0 �
∫ ∞

ε

e−Max2

dx � 1

2Maε
e−Maε2

(
=

∫ ∞

ε

x

ε
e−Max2

dx

)
.

(iii) fM(x) = (M + x) log(M + x) + (M − x) log(M − x) − 2M log M − x2

M
is increasing

in x on 0 � x � M , and is non-negative on |x| � M .

(iv)
1

M

∑
√

MΛ�i�M−1

e−ai2/M �
∫ ∞
√

Λ
M

− 1
M

e−Max2

dx � 1

2a(
√

MΛ − 1)
e−a(

√
Λ−1/

√
M)2. Here,

the summation on i may be either over integers or over half odd integers, within the
specified range.

Next note the following.

Lemma 9 Let a > 0, and let M be a positive integer or a positive half odd integer, and
put

I(M, a) =
1

2M − 1

M−1∑
i=−M+1

(
e−a((M+i) log(M+i)+(M−i) log(M−i)−2M log M)

√
1 − i2

M2

)
, (51)

where the summation on i is over integers if M is an integer, and is over half odd integers
if M is half odd. Then

lim
M→∞

√
M I(M, a) =

1

2

√
π

a
.

Proof. Let M > 1 and Λ be a real number satisfying
1

M
< Λ < M , and write

I(M, a) = K(M, a, Λ) + L(M, a, Λ), (52)

where

K(M, a, Λ) =
1

2M − 1

∑
√

MΛ�|i|�M−1

e−a((M+i) log(M+i)+(M−i) log(M−i)−2M log M)

√
1 − i2

M2
,

(53)
and

L(M, a, Λ) =
1

2M − 1

∑
|i|<√

MΛ

e−a((M+i) log(M+i)+(M−i) log(M−i)−2M log M)

√
1 − i2

M2
, (54)

11



where the summation on i is over integers or half odd integers, in accordance with I.
Concerning K, Proposition 8 implies

K(M, a, Λ) � 2

2M − 1

∑
√

MΛ�i�M−1

e−ai2/M � 2M

2M − 1

1

2a(
√

MΛ − 1)
e−a(

√
Λ−1/

√
M)2 ,

hence

lim sup
M→∞

√
MK(M, a, Λ) � 1

2a
√

Λ
e−aΛ, (55)

for any Λ > 0.
Next we evaluate L. Define

L̃(M, a, Λ) =
1

2M − 1

∑
|i|<√

MΛ

e−a((M+i) log(M+i)+(M−i) log(M−i)−2M log M),

and

L0(M, a, Λ) =
1

2M − 1

∑
|i|<√

MΛ

e−ai2/M .

If 0 < Λ < M and |i| <
√

MΛ, we have

∣∣∣∣∣
√

1 − i2

M2
− 1

∣∣∣∣∣ � Λ

M
, hence

|L(M, a, Λ) − L̃(M, a, Λ)| � L̃(M, a, Λ)
Λ

M
, M > Λ > 0. (56)

To compare L̃ and L0, note that Proposition 8 implies 0 � fM (i) � fM(
√

MΛ), if |i| <√
MΛ. By elementary calculus, we further have

fM (
√

MΛ) � (2 log 2 − 1)
Λ2

M
, M > Λ > 0.

Therefore

|L̃(M, a, Λ) − L0(M, a, Λ)| � L0(M, a, Λ) max
|i|<√

MΛ

∣∣e−afM (i) − 1
∣∣

� L0(M, a, Λ)a (2 log 2 − 1)
Λ2

M
, M > Λ > 0.

(57)

Finally, by an elementary argument of comparing summation with integration, we have,
for M > Λ > 0,

2M

∫ √
Λ
M

+ 1
M

0

e−Max2

dx − 2 � (2M − 1) L0(M, a, Λ) � 2M

∫ √
Λ
M

0

e−Max2

dx + 1.

Using Proposition 8, this eventually leads to∣∣∣∣√M L0(M, a, Λ) − 1

2

√
π

a

∣∣∣∣ � 2M

2M − 1

(
5

4
√

M
+

1

2a
√

Λ
e−aΛ

)
. (58)

Combining (56), (57), and (58), we arrive at

lim sup
M→∞

∣∣∣∣√M L(M, a, Λ) − 1

2

√
π

a

∣∣∣∣ � 1

2a
√

Λ
e−aΛ, (59)

12



for any Λ > 0.
Combining (59), (55), and (52), we finally have

lim sup
M→∞

∣∣∣∣√M I(M, a) − 1

2

√
π

a

∣∣∣∣ � 1

a
√

Λ
e−aΛ,

for any Λ > 0. The left hand side is independent of Λ, hence it must be 0.
�

Theorem 10 For r > 1, there exist constants Cr, C ′
r, Dr, D′

r, depending only on r, such
that

α(r)k �
√

k + 1 exp(− log r

log 2
(k + 1) log(k + 1) − Cr (k + 1) + Dr), k = 0, 1, 2, . . . , (60)

and

α(r)k �
√

k + 1 exp(− log r

log 2
(k + 1) log(k + 1) − C ′

r (k + 1) + D′
r), k = 0, 1, 2, · · · . (61)

eDr may be any number greater than

√
8 log r

π log 2
, and eD′

r any number less than

√
8 log r

π log 2
,

(by possibly losing Cr and C ′
r, respectively).

Remarks. Obviously, Theorem 10 implies Theorem 7, by changing Cr, C ′
r, Dr, D′

r, if neces-
sary. �

Proof of Theorem 10. Fix a positive integer k0 arbitrarily, and put

eDr =

(
inf

k>k0

1

2

√
k + 1 I(

k + 1

2
,
log r

log 2
)

)−1

, (62)

and

eD′
r =

(
sup
k>k0

1

2

√
k + 1 I(

k + 1

2
,
log r

log 2
)

)−1

, (63)

where I is as in (51). Note that Lemma 9 implies that, eDr and eD′
r are finite and positive,

and that by taking k0 sufficiently large, eDr and eD′
r can be made arbitrarily close to

lim
k→∞

(
1

2

√
k + 1 I(

k + 1

2
,
log r

log 2
)

)−1

=

√
π log 2

8 log r
.

Also, by adjusting Cr and C ′
r, we may always make (60) and (61) hold for finite number of

k’s; k = 0, 1, 2, · · · , k0.
Fix k0, Cr, Dr, C ′

r, and D′
r as above. We have so chosen these parameters so that (60)

and (61) hold for 0 � k � k0. Now assume the induction hypothesis that for some K > k0,

13



(60) and (61) hold for 0 � k < K. Then using the recursion (16), induction hypothesis,

and a change of variable j =
K + 1

2
− i,

α(r)K =
1

KrK+1

K∑
j=1

αK−jαj−1

�
√

K + 1 exp(− log r

log 2
(K + 1) log(K + 1) − Cr (K + 1) + Dr)

× eDr × 1

2

√
K + 1 I(

K + 1

2
,
log r

log 2
),

and a similar formula for the upper bound. This with Lemma 9, K > k0, and (62) implies
(60) for k = K, and (63) in place of (62) implies (61) for k = K.

By induction, (60) and (61) hold for all k.
�

4 Parameter dependence of the Taylor coefficients of

scaling limit.

Theorem 7 and a related conjecture in Section 3 suggests that r dependences of α(r)k may
be of interest. Put

b(r)k = α(r)k
k! rk(k+3)/2

2(k−1)
, k = 0, 1, 2, · · · . (64)

Then bk is a polynomial in r whose coefficients are rational.

Theorem 11 Let j and k be non-negative integers satisfying j < k, Then the coefficients
of rj−2 and lower order terms are equal for bj and bk. In other words, there exists B, a
formal power series in r, such that the coefficients of rk−2 and lower order terms in bk are
equal to those of B.

Proof. The recursion relation for bk in (64) is, by (16),

b(r)k+1 =
1

4

k∑
j=0

( k
j

)
rj(k−j)b(r)jb(r)k−j, , k = 0, 1, 2, · · · , b(r)0 = 2. (65)

First we have b(r)1 = 1.
We see from (65) that bk is a polynomial in r whose coefficients are rational, and that

modulo r2(k−2), only the j = 0, 1, k − 1, k terms contribute in the right hand side of (65)
(i.e., concerning terms of order 2(k−2)−1 and less, only the j = 0, 1, k−1, k terms count).
Therefore,

b(r)k+1 ≡ b(r)k +
k

2
rk−1b(r)k−1 mod r2(k−2).

In particular, if b(r)k−1 ≡ b(r)k mod rk−2, then b(r)k ≡ b(r)k+1 mod rk−1 follows, hence by
induction Theorem 11 holds.

�
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Remarks. Explicitly,

B(r) = 1 +
r

2
+

3 r2

2
+ 2 r3 + 5 r4 +

17 r5

4
+

55 r6

4
+

51 r7

4
+

101 r8

4
+

73 r9

2

+ 67 r10 +
449 r11

8
+

1161 r12

8
+

1357 r13

8
+

1069 r14

4
+

2631 r15

8

+
1099 r16

2
+

5281 r17

8
+

4859 r18

4
+

20283 r19

16
+ · · · .

�

5 Monotonicity arguments.

In this section, we prove Theorem 3.
For � > 0 and f ∈ Ω define R�(f) : [0,∞) → [0,∞) by R�(f)(0) = 1 and

R�(f)(t) =
1

�t

∫ �t

0

f(s)f(�t − s) ds, t > 0 . (66)

Obviously, R�(f) ∈ Ω. We already introduced the case � = 1 in (24).

Lemma 12 (i) Let � > 0 and f ∈ Ω and g ∈ Ω. If f(t) � g(t), t > 0, then R�(f)(t) �
R�(g)(t), t > 0 .

(ii) For a > 0 define Ta : Ω → Ω by Ta(f)(t) = f(at), t � 0 . Then

R� = R1 ◦ T�, (67)

and
R� ◦ Ta = Ta ◦ R� . (68)

Proof. Note that

R�(f)(t) =

∫ 1

0

f(�t
1 − s

2
) f(�t

1 + s

2
) ds, t > 0 , (69)

from which, with non-negativity of f and g, follows the first claim. The second claim
directly follows from (66). �

The following simple lemma is essential, and also shows how an apparently strange
looking function (22) appears in the argument.

Lemma 13 For b > 1
Rr(b)(fb,−)(t) � fb,−(t), t � 0, (70)

holds, where fb,− is as in (25).

Proof. Let 0 < t � 1, and put r = r(b) and A = {s ∈ (0, 1] | fb,−(rt
1 + s

2
) �= 0} . We have

(0, 1] \ A = {s ∈ (0, 1] | rt
1 + s

2
� 1} . Since fb,− is non-increasing, we have,

{s ∈ (0, 1] | fb,−(rt
1 − s

2
) = 0} ⊂ {s ∈ (0, 1] | fb,−(rt

1 + s

2
) = 0} .

15



Therefore

Rr(fb,−)(t) =

∫ 1

0

fb,−(rt
1 − s

2
) fb,−(rt

1 + s

2
) ds

=

∫
A

(1 − (rt
1 − s

2
)b−1) (1 − (rt

1 + s

2
)b−1) ds

=

∫ 1

0

[1 − (rt
1 − s

2
)b−1 − (rt

1 + s

2
)b−1] ds

+

∫
(0,1]\A

[(rt
1 + s

2
)b−1 − 1 + (rt

1 − s

2
)b−1] ds +

∫
A

(
1

2
rt)2(b−1)(1 − s2)b−1 ds .

Performing the integration of the first term in the right hand side, and noting that the
second and the third terms are non-negative, we have

Rr(fb,−)(t) � 1 − r(b)b−12

b
tb−1 = 1 − tb−1 = fb,−(t), 0 < t � 1.

For t > 1 we have Rr(fb,−)(t) � 0 = fb,−(t) . �

Proof of Theorem 3. Lemma 13 and Lemma 12 implies that for each t � 0, Rn
r(b)(fb,−)(t) =

Rn
1 (fb,−)(r(b)nt) = fn(rnt) is non-decreasing in n, and also Rn

r(b)(fb,−)(t) � 1 for all t � 0

and n � 0. Therefore there exists a pointwise limit (26) satisfying

fb,−(t) � f̃(t) � 1, t � 0. (71)

Since this is a pointwise monotone limit, the monotone convergence Theorem and fn+1 =
Rr(fn) with (66) imply

f̃(t) =
1

rt

∫ rt

0

f̃(s)f̃(rt − s) ds, t > 0. (72)

Note also that fn ∈ Ω implies that f̃(t) is non-increasing in t, and that 1 < r = r(b) � ρ =

1.26 · · · < 2 for b > 2 implies
r

2
> r − 1 > 0. Using these facts in (72), we have

f̃(t) =
2

rt

∫ rt/2

0

f̃(s)f̃(rt − s) ds

=
2

rt

∫ (r−1)t

0

f̃(s)f̃(rt − s) ds +
2

rt

∫ rt/2

(r−1)t

f̃(s)f̃(rt − s) ds

� 2

rt
(r − 1)t f̃(t) +

2

rt

∫ rt/2

(r−1)t

f̃(s)f̃(rt − s) ds,

which further leads to

f̃(t) � 1

(1 − r
2
)t

∫ rt/2

(r−1)t

f̃(s)f̃(rt − s) ds

� 1

(1 − r
2
)t

(
1

2
rt − (r − 1)t) f̃((r − 1)t) f̃(

1

2
rt)

� f̃((r − 1)t)2, t � 0.

(73)
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Put c = inf
t�0

f̃(t) ∈ [0, 1]. Taking infimum in (73) we have c � c2, which, with 0 � c � 1,

implies c = 0 or c = 1. Assume that f̃(t) < 1 for some t > 0. Then c = 0, which
in particular implies that there exists t0 > 0 such that f̃(t0) � e−1. For t > t0, let

n = n(t) =

[
log t

t0

log 1
r−1

]
, where [x] denotes the largest integer not exceeding x. Note that

0 < r − 1 = r(b) − 1 � ρ − 1 < 1, hence δ :=
log 2

log 1
r−1

> 0 . We then have, using also

monotonicity of f̃ ,

f̃(t) � f̃((r − 1)n(t)t)2n(t) � f̃(t0)
2n(t) � e−2n(t) � exp(−1

2

(
t

t0

)δ

), t � t0.

This proves integrability (27) of f̃ , and a proof of Theorem 3(i) is complete.
Finally, to prove Theorem 3(ii), we prepare the following lemma. Let us extend the

definition of R� in (66) to non-negative right continuous functions f : [0,∞) → [0, 1]
satisfying f(0) = 1, by R�(f)(0) = 1 and (66). Obviously, R�(f) shares the properties with
f , and Lemma 12 holds in this extended class of functions.

Lemma 14 Assume that b and b′ satisfy

2 < b < b′ � min{ 1

log ρ
, 2b − 1}, (74)

and define fb,b′,+ : [0,∞) → [0, 1] by

fb,b′,+(t) = min{1 − tb−1 + Ctb
′−1, 1}, t � 0,

where C is a constant satisfying C � max{1, C1, C2}, where

C1 =

⎛
⎜⎜⎜⎝

√
π Γ(b)

(
r(b)
2

)2(b−1)

2 Γ(b + 1
2
)

(
1 −

(
r(b)
r(b′)

)b′−1
)
⎞
⎟⎟⎟⎠

(b′−b)/(b−1)

, C2 =
b − 1

b′ − 1

(
b′ − b

b′ − 1

)(b′−b)/(b−1)

.

Then
Rr(b)(fb,b′,+)(t) � fb,b′,+(t), t � 0 .

Remarks. Note that in the definition of C1,
r(b)

r(b′)
< 1, because b < b′ � 1

log ρ
. �

Proof. Note that r(b′) � ρ = 1.26 · · · < 2 for all b′ > 2. Note also that C � C2 implies
1 − tb−1 + Ctb

′−1 � 0, t � 0, hence fb,b′,+ is non-negative on [0,∞).
Define t0 > 0 by Ctb

′−b
0 = 1. C � 1 and b′ > b imply t0 � 1. Also it is easy to see that

fb,b′,+(t) = 1, t � t0 . By definition, 0 � fb,b′,+(t) � 1, t � 0, hence 0 � Rr(b)(fb,b′,+)(t) � 1,
t � 0. Therefore the statement holds for t � t0. In the following we assume 0 < t < t0 .
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Put, in the following, r = r(b). Using fb,b′,+(s) � 1 − sb−1 + Csb′−1, (69), and (22), we
see that

Rr(fb,b′,+)(t) � 1 − 2

b
(rt)b−1 + I2(t) + I3(t) = 1 − tb−1 + I2(t) + I3(t) , where,

I2(t) =

(
rt

2

)2(b−1) ∫ 1

0

(1 − s2)b−1 ds +
2C

b′
(rt)b′−1

= Ctb
′−1

(
1

C

(r

2

)2(b−1)
∫ 1

0

(1 − s2)b−1 ds t2b−b′−1 +

(
r

r(b′)

)b′−1
)

,

I3(t) = −C

(
rt

2

)b+b′−2 ∫ 1

0

(1 + s)b−1(1 − s)b′−1 ds

− C

(
rt

2

)b+b′−2 ∫ 1

0

(1 − s)b−1(1 + s)b′−1

(
1 − C

(
rt

2

)b′−b

(1 − s)b′−b

)
ds.

Using t < t0 = C−1/(b′−b) with 2b − b′ − 1 � 0, and C � C1 with b′ > b > 1, we find

I2(t) � Ctb
′−1. Using Ctb

′−b
0 = 1 and r < r(b′) < 2, we have C

(
rt

2

)b′−b

� 1, hence

I3(t) � 0 . We therefore have Rr(fb,b′,+)(t) � 1 − tb−1 + Ctb
′−1 � fb,b′,+(t). �

Let us return to a proof of Theorem 3(ii), and let 2 < b <
1

log ρ
and r = r(b). Note

that for such a b, there exists b′ which satisfies (74). Lemma 12(i) and Lemma 14 imply,
for f0 = fb,− ,

fn(rnt) = Rn
r (fb,−)(t) � Rn

r (fb,b′,+)(t) � fb,b′,+(t), t � 0.

Taking a limit n → ∞, we then have f̃(t) � fb,b′,+(t), t � 0. Therefore f̃(t) < 1 for all small
positive t, and monotonicity of f̃(t) in t further implies f̃(t) < 1, t > 0. This completes a
proof of Theorem 3.

�

6 Random sequential bisections of a rod.

Here we prove Theorem 5, and discuss its implications in terms of random sequential
bisections of a rod and in binary search trees. We also prove Theorem 16 as a corollary to
Theorem 5, Theorem 2, and Lemma 12.

That w0 in (33) is in C is obvious, if we note q0 = w0(0) = 1 and

1

z
(1 − exp(−z)) =

∞∑
k=0

(−1)k 1

(k + 1)!
zk.

If we note the correspondences (11) and (13), Theorem 1 implies all the conclusions of
Theorem 5 except the claim r = ρ. Now, the value r of the limit (21), which we assumed
to exist in Theorem 5, is equal to that of a (weaker) limit lim

n→∞
q1/n
n . This weaker limit can

be derived by applying a theory of random sequential bisection of a rod, as follows.
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Let F0 be as in (35), and define a sequence of functions Fn : [0,∞) → [0, 1], n =
0, 1, 2, · · ·, recursively, by

1 − Fn+1(t) =
1

t

∫ t

0

(1 − Fn(s))(1 − Fn(t − s)) ds. (75)

It is noted in eq. (5.1) of [11] that 1−Fn(x) thus defined is the probability that at the nth
stage of random sequential bisections of a rod of length x, all the pieces have length shorter
than 1 . Namely, one starts with a rod of length x and breaks it into two pieces randomly
with uniform distribution. Then one breaks each of the resulting two pieces randomly and
independently, and contiue the procedure recursively, and see, after n steps, whether all
the 2n pieces are shorter than 1. Alternatively, one could start from a rod of length 1, and
denote by Xn the length of the longest piece among 2n pieces at nth stage, starting from
X0 = 1. Then

1 − Fn(1/t) = Prob[ Xn < t ]. (76)

Lemma 4 with (75) implies

wn(x) =

∫ ∞

0

e−xt(1 − Fn(t)) dt, x � 0, n = 0, 1, 2, · · · , (77)

and

qn = wn(0) = E[
1

Xn
] , (78)

where we denote the expectations by E[ · ].
First note that, the existence of a limit lim

n→∞
q1/n
n can be proved without the assumption

(21) in Theorem 5 of the existence of a stronger limit. In fact, consider the longest piece
X̃n,m at n + mth stage among descendants from the longest piece Xn at nth stage. Clearly
X̃n,m � Xn+m. Note also that X̃n,m/Xn and Xn are independent and the former is equal
in distribution to Xm. Therefore

qn+m = E[
1

Xn+m
] � E[

1

X̃n+m

] = E[
Xn

X̃n,m

]E[
1

Xn
] = E[

1

Xm
]E[

1

Xn
] = qmqn .

Hence
qn+m � qnqm , n, m = 1, 2, 3, · · · . (79)

Using standard arguments on subadditivity, we deduce that the limit lim
n→∞

qn
1/n = inf

n�1
qn

1/n

exists.
It remains to prove lim

n→∞
qn

1/n = ρ for a proof of Theorem 5. The bound lim
n→∞

qn
1/n � ρ

is not difficult. We may, for example, apply Lemma 15 below with (35) for 1 − f(x) and

with b =
1

log ρ
(i.e., r(b) = ρ) to conclude lim

n→∞
q1/n
n � ρ. Alternatively, we may use

lim
n→∞

X−1/n
n = ρ, a.s., (80)

which is a result [2, Cor. to Thm. 2] applied to the problem of random sequential bisection
along the lines of [3]. Using (78), Hölder’s inequality, Fatou’s Lemma, and (80) in turn, we
have

lim
n→∞

q1/n
n = lim

n→∞
E[

1

Xn
]1/n � lim inf

n→∞
E[ X−1/n

n ] � E[ lim
n→∞

X−1/n
n ] = ρ.
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Finally we prove the bound in the other direction, lim
n→∞

qn
1/n � ρ. Almost sure conver-

gence implies convergence in probability, hence (80) implies

Prob[ lim
n→∞

1

Xn

� (ρ + ε)n ] = 0

for any ε > 0. This with (76) and the dominated convergence Theorem implies, for each
x > 0,

lim
n→∞

∫ ∞

0

(1 − Fn((ρ + ε)nt)) e−xt dt =

∫ ∞

0

lim
n→∞

Prob[
1

Xn
> (ρ + ε)nt ] e−xt dt = 0 .

Assume that the claim is wrong, so that lim
n→∞

q1/n
n > ρ + ε for some ε > 0. Then for large

enough n we have qn > (ρ + ε)n. Note that (76) implies that Fn(s) is increasing in s.
Therefore, using also (77) and the existence of scaling limit w̄ (which is already proved
under the assumptions of Theorem 5, as noted at the beginning of this section),

lim
n→∞

∫ ∞

0

(1 − Fn((ρ + ε)nt)) e−xt dt � lim
n→∞

∫ ∞

0

(1 − Fn(qnt)) e−xt dt = w̄(x).

Hence 0 � w̄(x), x > 0, resulting in a contradiction. Thus the claim lim
n→∞

q1/n
n � ρ is

proved, and r = lim
n→∞

q1/n
n = ρ holds.

This completes a proof of Theorem 5.

Remarks. (i) Using the explicit formula (16) in Theorem 1, we can compare our results
with known probability distributions, for example, the extreme value distributions in
[9], which are possible scaling limits n → ∞ of maximum of n i.i.d. random variables.
We find that for r > 1 our scaling limits are not in [9]. Since the random sequential
bisections produce pieces of non-independent lengths this looks natural, but we are
further saying that in the n → ∞ limit, the dependences remains, and our problem
is non-trivial also from this aspect.

(ii) As we have seen, lim
n→∞

q1/n
n = ρ is proved by applying existing results in [2, 3]. It may

seem puzzling why the existence of lim
n→∞

qn+1/qn is nevertherless unproved. A direct

explanation is that the arguments in [2, 3] is based on large deviation principles or the
law of large numbers type arguments [1, 2, 7, 8], which are strong enough to control

q
1/n
n , but unfortunately cannot control qn strongly enough to prove the existence of
lim

n→∞
qn+1/qn. In fact, the results of [2] imply (as used in [3]) that instead of random

sequential bisections, if we, for each piece at each stage of construction of rod pieces,
generated 2 independent random variables each with uniform distribution on [0, 1]
and creating 2 pieces whose lengths are those given by multiplying the length of the
parent piece with the so generated random variables, and repeat the procedure, then
q̃n, the expectation value of the inverse maximum length among the 2n pieces at n-th
stage, also satisfies lim

n→∞
q̃1/n
n = ρ. Thus the scaling factor ρ does not contain the

information of anti-correlation of the lengths of the 2 pieces obtained by breaking a
rod piece. The recursion relation is different from (75) for this new problem, hence
the scaling limits (if they exist) are different. Hence we may say that the existence
problem of lim

n→∞
qn+1/qn contains the information of correlation of bisected pieces

(through Theorem 1), and are therefore deeper than an already profound theory in
[2].
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(iii) The case 1 < r < ρ (see Theorem 2 and Section 5) corresponds, in terms of random
sequential bisections, to the case where the initial rod is given a random length (with
possibility of indefinitely large length), which does not usually seem to appear in
practical situations. Of course, from differential equation point of view, problem of
scaling factor different from ρ for different initial functions makes sense.

�

We will turn to some remarks on the implication of Theorem 5 on random sequential
bisections of a rod and on binary search trees. Theorem 5 in particular implies that the

distribution of
1

qn Xn
converges weakly to a distribution (scaling limit) whose generating

function is given by
lim

n→∞
E[ e−z/(qnXn) ] = 1 − zw̄(z), z ∈ C, (81)

and that the moments satisfy

lim
n→∞

E[ X−k
n ]

E[ X−1
n ]k

= αk−1k!, k = 2, 3, 4, · · · . (82)

with αk given by (16) (assuming a numerically supported conjecture that lim
n→∞

qn+1/qn

exists).
We also note that the maximal length Xn of random sequential bisections of a rod is

closely related to the height HN of binary search trees with data size N . In fact, it is noted
in [3] that

Prob[ Xn � 1 + n

N
] � Prob[ HN � n ] � Prob[ Xn � 1

N
], n, N ∈ N.

This is not completely sufficient to proceed further, but if we could further assume, for
example, that

Prob[ HN � n ] ∼ Prob[ Xn � nβ

N
] (83)

asymptotically (in some good sense) for a 0 � β � 1, then (82) would give, by noting

E[ X−k ] = k

∫ ∞

0

x−k−1Prob[ X−1 � x ]dx,

lim
n→∞

∞∑
N=1

NkProb[ HN � n ]

(
∞∑

N=1

Prob[ HN � n ])k+1

= αkk!. (84)

(Note that this formula is independent of β, hence (84) might be correct irrespective of the
validity of the extra assumption (83).) Possibility of such ‘sum rules’ seems not to have
been considered.

To conclude this section, we note a result for (18) with b � 1

log ρ
(Theorem 16).

Lemma 15 For f ∈ Ω, let

qn[f ] =

∫ ∞

0

Rn
1 (f)(s) ds, (85)

where Rn
1 is the n-fold iteration of R1 . (Similar notations for the iterations will be used

hereafter.)
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(i) If, for f ∈ Ω, there exist constants b > 1 and C > 0 such that f(t) � 1 − Ctb−1,
t � 0, then lim inf

n→∞
qn[f ]1/n � r(b).

(ii) If, for f ∈ Ω, there exists a constant t0 > 0 such that f(t) = 0, t � t0 , then
lim sup

n→∞
qn[f ]1/n � ρ.

(iii) If, for f ∈ Ω, there exist constants b � 1

log ρ
, C > 0, and t0 > 0, such that f(t) �

1 − Ctb−1, t � 0, and f(t) = 0, t � t0, then lim
n→∞

qn[f ]1/n = ρ.

Proof. (i) Put f̃(t) = f(C−1/(b−1)t), t � 0. Then f̃(t) � fb,−(t), t � 0. Lemma 12 and
Lemma 13 therefore imply

Rn
1 (f)(C−1/(b−1)r(b)nt) = Rn

r(b)(f̃)(t) � Rn
r(b)(fb,−)(t) � fb,−(t), t � 0,

or
Rn

1 (f)(t) � fb,−(C1/(b−1)r(b)−nt), t � 0,

and consequently qn[f ] � C−1/(b−1)r(b)n(1 − 1

b
).

(ii) Note that Fn defined by (75) and (35) satisfies 1 − Fn(t) = Rn
1 (1 − F0)(t), t � 0,

where F0 is defined by (35). On the other hand, the assumptions imply

1 − F0(t) � f(t0t) = Tt0(f)(t), t � 0.

Therefore Lemma 13 implies

qn =

∫ ∞

0

(1 − Fn(t)) dt �
∫ ∞

0

Rn
1 (f)(t0t) dt =

1

t0
qn[f ],

where qn is as in (78). As proved before, ρ = lim
n→∞

q1/n
n holds, hence the claim follows.

(iii) The assumptions imply that there exists a constant C ′ > 0 such that f(t) � 1 −
C ′t1/ log ρ, t � 0 (because tb � t1/ log ρ, 0 � t � 1). Then the first claim implies

lim inf
n→∞

qn[f ]1/n � r(
1

log ρ
) = ρ. The assumptions also imply that the second claim can

also be applied to have lim sup
n→∞

qn[f ]1/n � ρ. Hence the limit exists and the last claim

follows. �

Theorem 16 Let b � 1

log ρ
, and let wn, n = 0, 1, 2, · · ·, be a sequence defined recursively

by (5), with w0 as in (18). If (21) holds with qn = wn(0), then the scaling limit (7) exists
with r = ρ, and satisfies (15) with (16) and (17).

Proof. Note that w0 in (18) has an expression (28). In particular, the corresponding f0 in
(30) is f0 = fb,− , which satisfies f0(t) = 0 for t � 1. Then (29) implies

w0(x) =
∞∑

k=0

(−x)k

k!

∫ 1

0

tkf0(t) dt, (86)
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which has an infinite radius of convergence, hence can be continued analytically to an entire
function w0 : C → C. Also (86) and (29) imply that w̄0 defined by (10) is in the class C
defined just before Theorem 1. Therefore Theorem 1 with the correspondences (11) and
(13) implies that the scaling limit w̄ exists and satisfies (15) with (16) and (17).

The only remaining claim to prove is r = ρ, where r = lim
n→∞

qn+1

qn

. Note that the limit

is equal to a weaker limit lim
n→∞

q1/n
n . Lemma 4 implies that wn has an expression (77) with

fn ∈ Ω satisfying fn = Rn
1 (f0). Lemma 15 implies, by noting

qn = wn(0) =

∫ ∞

0

fn(t) dt = qn[fn],

that r = ρ if b � 1

log ρ
, which completes a proof of Theorem 16. �

A Appendix.

Concerning the assumption (21) in Theorem 1, we give numerical results of the ratio qn+1/qn

for the case (33), in Fig. 1.

1.4

1.3

1.25 10 20 30 40

Figure 1: Plot of numerical results for qn+1/qn vs n. The number of sample points N = 3200.
The differences between N = 1600 and N = 3200 results are within the size of plots in the
figure.

q1/q0 = 2 log 2 can be obtained explicitly, but for n � 1, we have to perform numerical
calculations. Numerical values are obtained by discretizing 1 − Fn (i.e., represent the
function by its values at a finite number, say N , of points), and performing numerical
integration (i.e., approximating by a discrete sum of N terms) of (31), starting from (35).
To be more explicit, we represented Fn by Fn(xn,i), i = 0, 1, 2, · · · , N−1, where xn,i = 2ni/N .

The results suggest that qn+1/qn is decreasing in n. In fact, q2/q1 � q1/q0, or equiv-
alently, q2 � q2

1 does hold, by substituting n = m = 1 in (79). However, q3/q2 � q2/q1,
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or q3q1 � q2
2, already seems hard to prove. Our numerical results are also consistent with

lim
n→∞

qn+1/qn = ρ = 1.261 · · ·.
Concerning the integrability of Q in (27), our numerical data for Qn = qn/ρn given in

Fig. 2 suggests that Qn is increasing in positive power order and Q = lim
n→∞

Qn = ∞ (see

the proof of Theorem 3 in Section 5), hence ρn is not a correct scaling factor for the present
case, and qn = wn(0) should be used, as discussed in Section 1.

1

2

3

4

5

Q

 50 100 150 n

Figure 2: Plot of Qn = qn/ρn vs n. The curve is a fit to the data: Qn = 0.666 n0.407.
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