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Abstract

We consider the stochastic ranking process with space-time dependent unbounded jump
rates for the particles. We prove that the joint empirical distribution of jump rate and scaled
position converges almost surely to a deterministic distribution in the infinite particle limit.
We assume topology of weak convergence for the space of distributions, which implies that
the fluctuations among particles with different jump rates cancel in the limit. The results are
proved by first finding an auxiliary stochastic ranking process, for which a strong law of large
numbers is applied, and then applying a multi time recursive Gronwall’s inequality. The limit
has a representation in terms of non-Markovian processes which we call point processes with
last-arrival-time dependent intensities.
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1 Introduction.

Let N be a positive integer and T > 0. T is an arbitrary constant fixed throughout the paper, and we
are interested in the limit N → ∞. A stochastic ranking process is a stochastic system of N particles
on a line segment [0, 1] for a time interval [0, T ], defined as follows. Let W ⊂ C1([0, 1]×[0, T ]; [0,∞))
be a set of non-negative valued C1 functions in two variables such that the partial derivative with
respect to the first variable is bounded on [0, 1] × [0, T ]. We write

‖f‖T = sup
(z,s)∈[0,1]×[0,T ]

|f(z, s)|,(1)

for a function f : [0, 1] × [0, T ] → R, and put

CW = sup
w∈W

∥∥∥∥∂ w

∂y

∥∥∥∥
T

< ∞.(2)

Let w1, w2, . . . be an infinite sequence in W .

Let y
(N)
1 , y

(N)
2 , . . ., y

(N)
N be a permutation of { i

N
| i = 0, 1, . . . ,N − 1}. Then a stochastic

ranking process is a system of stochastic processes {Y (N)
i | i = 1, 2, . . . ,N} defined on a probability

space (Ω,F ,P) by

Y
(N)
i (t) = y

(N)
i

+
1
N

N∑
j=1

∫
s∈(0,t]

∫
ξ∈[0,∞)

1
Y

(N)
j (s−)>Y

(N)
i (s−)

1
ξ∈[0,wj(Y

(N)
j (s−),s))

ν
(N)
j (dξds)

−
∫

s∈(0,t]

∫
ξ∈[0,∞)

Y
(N)
i (s−)1

ξ∈[0,wi(Y
(N)
i (s−),s))

ν
(N)
i (dξds),

i = 1, 2, . . . ,N, t � 0.

(3)

Here, 1A is the indicator function of an event A, and for each N , ν
(N)
i , i = 1, 2, . . . ,N , are

independent Poisson random measures on [0,∞) × [0,∞) with uniform unit intensity measures,
i.e., E[ ν

(N)
i ([a, b] × [c, d]) ] = (b − a)(d − c) for b > a � 0 and d > c � 0, and ν

(N)
i (A) and ν

(N)
i (B)

are independent Poisson variables if A ∩ B = ∅.
If we put

ν̃
(N)
i (t) =

∫
s∈(0,t]

∫
ξ∈[0,∞)

1
ξ∈[0,wi(Y

(N)
i (s−),s))

ν
(N)
i (dξds),(4)

then (3), the position of the particle i at time t, is expressed as

Y
(N)
i (t) = y

(N)
i +

1
N

N∑
j=1

∫ t

0
1

Y
(N)
j (s−)>Y

(N)
i (s−)

ν̃
(N)
j (ds) −

∫ t

0
Y

(N)
i (s−)ν̃(N)

i (ds).

We then see that the time development of {Y (N)
i } is determined by the move-to-front rules [17]

driven by the point processes {ν̃(N)
i } with space-time dependent intensities given by the ‘density

functions’ {wi}. If wi is constant then the process ν̃
(N)
i is the Poisson process, while in general,

its increments depend on past and is dependent on other particles. The move-to-front rule in
particular implies that the particle system {Y (N)

i } as a whole takes values in the rearrangement of
i

N
, i = 0, 1, . . . ,N − 1. Each particle either increases its position by

1
N

, or else takes the value 0,
i.e. jumps to the top position, as t increases.
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A starting point for our study is the joint empirical distribution of wi and the position, given
by

µ
(N)
t =

1
N

N∑
i=1

δ
(wi,Y

(N)
i (t))

.(5)

Here δc is a unit measure concentrated at c. (We will use this notation for a unit measure on
any probability space.) µ

(N)
· is a stochastic process taking values in the set of Borel probability

measures, with initial distribution being

µ
(N)
0 =

1
N

N∑
i=1

δ
(wi,y

(N)
i )

.(6)

By considering a process X
(N)
i (t) = NY

(N)
i (t)+1 taking values in positive integers, we see that

a stochastic ranking process is a model of ranking system, such as the sales ranks found at online
bookstores[5, 6, 4, 7, 9, 8, 15, 16, 13]. As a model of popularity ranks of an online bookstore, the
move-to-front rule defines the rank as a stochastic number with the ‘latest purchased book as most
popular’ rule. That the intensity wi differs for different book i represents that there are popular
books and less popular ones. (Many books on mathematics perhaps provide examples of the latter.)
See also [13] and references therein for more background.

We will prove existence of hydrodynamic limit, that assuming convergence of µ
(N)
0 as N → ∞

we have convergence of µ
(N)
t for all t ∈ [0, T ]. The common standard quantities effective for the

move-to-front rules are the characteristic curves Y
(N)
C defined by

Y
(N)
C (γ, t) = y0

+
1
N

N∑
j=1

∫
s∈(t0,t]

∫
ξ∈[0,∞)

1
Y

(N)
j (s−)�Y

(N)
C (γ,s−)

× 1
ξ∈[0,wj(Y

(N)
j (s−),s))

ν
(N)
j (dξds),

γ = (y0, t0) ∈ [0, 1] × [0, T ], t � t0,

(7)

and a set of spatial distribution functions ϕ(N) of µ
(N)
t defined by

ϕ(N)(dw, γ, t) = µ
(N)
t (dw × [Y (N)

C (γ, t), 1]),
γ = (y0, t0) ∈ [0, 1] × [0, T ], t � t0, w ∈ W.

(8)

The latter is a refinement of the former in the sense that (5) and (8) imply

Y
(N)
C (γ, t) = y0 +

[N(1 − y0)]
N

− ϕ(N)(W,γ, t),

γ = (y0, t0) ∈ [0, 1] × [0, T ], t � t0 .
(9)

Since ϕ(N) determines µ
(N)
t , the convergence problem of µ

(N)
t is reduced to that of ϕ(N).

If the intensity densities w ∈ W are independent of y, then ϕ(N) is an arithmetic mean of
independent stochastic processes, so that a strong law of large numbers for a sum of independent
processes can be applied to prove existence of almost sure N → ∞ limit under reasonable assump-
tions [4]. In contrast, when the intensity densities depend on y, the problem is a more involved one
of law of large numbers for dependent processes. The case of spatially varying intensity densities was
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first studied in [13], where we found the existence of the limit under restricting assumptions. One
assumption was boundedness of W , which excludes, for example, Pareto (power law) distributions
which may be of interest in applying stochastic ranking processes to social studies[8, 9]. Another,
a mathematically more essential assumption in [13] was that we adopted total variation norm for
the topology of the space of Borel measures. This means that, among other points, the law of large
numbers proved in [13] is a cancellation of fluctuations among processes {Y (N)

i } having the same
associated intensity densities wi = w. This assumption is to be compared with the results in [4],
where we proved a corresponding convergence theorem (for the easier case of spatially constant in-
tensity densities) with topology of the space of Borel measures induced by weak convergence, which,
for example, allows all the wi’s to be different and the cancellation of fluctuation is still implied. It
would be mathematically interesting to see how this law of large numbers (fluctuation cancellation)
mechanism, which escaped from our hands in [13], would be stable against introduction of the
spatial dependence of w ∈ W .

The essential ingredient of the proof of this paper may be summarized as follows:

• Discovery of the point process with last-arrival-time dependent intensity [10, 11]. The hy-
drodynamic limit turned out to have an expression in terms of probabilities of the process.
This expression was absent in [13], which was a partial cause of a technical boundedness
assumptions on W . The process lack independent increment properties, which is a remnant
of stochastic dependence among the particles through the position dependence of w ∈ W .
This is to be compared with the earlier studies for position independent w, where the corre-
sponding quantities have explicit formulas using exponentials of integration of w, related to
the probabilities of the Poisson process [5, 4].

• Discovery of an intermediate model, defined in § 3, which we call the flow driven stochastic
ranking process. The ‘intensity densities’ for the flow driven stochastic ranking process are
involved but without position dependence, hence the distribution function ϕ for this model
is a sum of independent processes, and a standard law of large numbers has a chance of
explaining the fluctuation cancellation mechanism. (Introduction of an intermediate model
resembles a notion of local equilibrium which appears in the hydrodynamic limit for diffusions.
The limit of the stochastic ranking process is, in terms of fluid dynamics, a one-sided flow
with evaporation from upper stream y = 0 to the down stream y = 1, and the correspondence
to diffusion is only a kind of metaphor.)

Since the stochastic dependence among the particles induced by the move-to-front rule is
handled by introduction of distribution functions ϕ, the real challenge from a viewpoint
of mathematical analysis is the stochastic dependence through position dependence of w ∈
W , which was first studied in [13]. In the reference we adopted a sophisticated method
(than adopted in this paper) based on submartingale inequalities, which worked well with
the restricting assumptions in the reference, and enabled a relatively quick proof without
introducing intermediate models.

• Development and application of a uniform strong complete law of large numbers for indepen-
dent monotone function valued random variables.

Since the flow driven stochastic ranking process is stochastically similar to the stochastic
ranking process with position independent intensities, a strong law of large numbers for inde-
pendent processes is applicable. Since, however, we later need to compare this intermediate
model with the original model, we apply uniform convergence results stronger than in earlier
works [4], where the law of large numbers for the independent processes was practically the
final goal.
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• Application of a hierarchy of multi time Gronwall type inequalities. The last step is to prove
that the original stochastic ranking process has a same limit with the (appropriately chosen)
flow driven stochastic ranking process. To evaluate the difference, we couple the two models,
and resort to a multi time variable recursive version of Gronwall type inequality which we
develop in § 4.

In [13], we also proved the occurrence of propagation of chaos. Namely, for each integer L, the
tagged particle system

(Y (N)
1 (t), Y (N)

2 (t), . . . , Y (N)
L (t))

converges to a limit process uniformly in t ∈ [0, T ] as N → ∞, if the system of the initial positions
(y(N)

1 , y
(N)
2 , . . . , y

(N)
L ) converges, and the components of the limit are independent of each other. A

corresponding result is also proved in this paper.
The plan of the present paper is as follows. In § 2 we state the main results, that the stochas-

tic ranking process with space-time dependent intensities has a limit characterized by the point
processes with last-arrival-time dependent intensities. For convenience, we will summarize the
definition and relevant results of the point processes in § A. In § 3 we formulate the flow driven
stochastic ranking process and prove the existence of the strong uniform law of large numbers (the
large particle number limit). In § 4 we formulate and prove a hierarchy of a multi time version of
the Gronwall’s inequality, which we use in § 5 to complete a proof of the main theorem stated in
§ 2.

2 Formulation and the main results.

To state the main results precisely, we first formulate the quantities which appear in the infinite
particle limit of the stochastic ranking process. Denote the sets of initial (t = 0) points in the
space-time [0, 1]× [0, T ], the set of upper stream boundary (y = 0) points, and their union, the set
of initial/boundary points, respectively by

Γb = {(0, s) | 0 � s � T},
Γi = {(z, 0) | 0 � z � 1},
Γ = Γb ∪ Γi .

(10)

For t ∈ [0, T ], denote the set of initial/boundary points up to time t by

Γt = {(z, t0) ∈ Γ | t0 � t} = Γi ∪ {(0, t0) ∈ Γb | 0 � t0 � t},(11)

and the set of admissible pairs of the initial/boundary point γ and time t by

∆T = {(γ, t) ∈ ΓT × [0, T ] | γ ∈ Γt}.(12)

Define the set of flows ΘT on [0, 1] × [0, T ] by

ΘT = {θ : ∆T → [0, 1] | continuous, θ((y0, t0), t0) = y0, (y0, t0) ∈ ΓT ,
surjective and non-increasing in γ for each t,
non-decreasing in t for each γ },

(13)

where, we define a total order 	 on the initial/boundary set ΓT by

s � t, z � y ⇔ (0, T ) 	 (0, t) 	 (0, s) 	 (0, 0) 	 (z, 0) 	 (y, 0) 	 (1, 0).(14)
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For example,
θ((1,0), t) = 1, t ∈ [0, T ], θ ∈ ΘT .(15)

For each θ ∈ ΘT , w ∈ W , and z ∈ [0, 1], define w̃θ,w,z, a non-negative valued continuous function
of (s, t) satisfying 0 � s � t � T , by

w̃θ,w,z(s, t) =
{

w(θ((z, 0), t), t), if s = 0,
w(θ((0, s), t), t), if s > 0.

(16)

Note that w̃θ,w,z is independent of z if s > 0. Let θ ∈ ΘT , and put

ϕθ(dw, γ, t) =
∫

z∈[y0,1]
P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ] µ0(dw × dz),

γ = (y0, t0) ∈ Γt, (γ, t) ∈ ∆T ,
(17)

where ν̃θ,w,z is the point process with last-arrival-time dependent intensity, denoted by N in § A,
with the ‘intensity density’ ω(s, t) in the definition (141) of the process given by w̃θ,w,z(s, t) of (16),
and µ0 is a Borel probability measure on the direct product space W × [0, 1].

The following is proved in [10].

Theorem 1 ([10, Theorem 9, (89)]) There exists a unique flow yC ∈ ΘT such that

θ(γ, t) = 1 − ϕθ(W,γ, t), γ = (y0, t0) ∈ Γ, (γ, t) ∈ ∆T ,(18)

holds for θ = yC . �

In [10] below the Theorem it is remarked that there exists µt, taking values in the space of Borel
probability measures on W × [0, 1], such that

ϕyC
(dw, (y0, t0), t) = µt(dw × [yC((y0, t0), t), 1]),

((y0, t0), t) ∈ ∆T ,
(19)

and below Theorem 1 in [10] it is also remarked that µt and yC satisfy

yC(γ, t) = y0 +
∫ t

t0

∫
W×[yC(γ,s),1)

w(z, s)µs(dw × dz) ds.(20)

Next we state our assumptions on the infinite particle limit N → ∞ of initial (t = 0) conditions.
We will assume a standard supremum norm on the space of continuous functions on the closed
interval [0, 1]× [0, T ], with which we define the weak convergence of Borel probability measures on
W in the standard way [1]. For the initial distribution µ

(N)
0 in (6), we assume the following weak

convergence with additional uniform bounds on the order of convergence to µ0 in (17):

For any set H ⊂ C0(W × [0, 1];R) of uniformly bounded,

equicontinuous functions, ∃δ ∈ (0,
1
2
), ∃C > 0;

(∀N ∈ N) (∀h̃ ∈ H) (∀y ∈ [0, 1])∣∣∣∣
∫

W×[y,1]
h̃(w, z)µ

(N)
0 (dw × dy) −

∫
W×[y,1]

h̃(w, z)µ0(dw × dy)
∣∣∣∣ � C

N δ
.

(21)

Denote the marginal distribution of µ0 on W by λ;

λ(dw) = µ0(dw × [0, 1]),(22)
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and put

λ(N) =
1
N

N∑
i=1

δwi .(23)

Comparing with (5), we see that λ(N) is the marginal distribution of µ
(N)
t on W for all t;

λ(N)(dw) = µ
(N)
t (dw × [0, 1]), t ∈ [0, T ].(24)

For λ we assume
MW :=

∫
W

‖w‖T λ(dw) < ∞.(25)

The assumption (21) implies, with (24) and (22),

λ(N) → λ, weakly as. N → ∞.(26)

In addition we assume convergence of the average of ‖w‖T:

lim
N→∞

∫
W

‖w‖T λ(N)(dw) = MW .(27)

Remark. In (21) we assume uniform order of convergence O(N−δ), while Ascoli–Arzelà type theorem
implies uniform convergence but has no control in general on the order of convergence. �

We are ready to state the main results of this paper.

Theorem 2 Under the assumptions (2), (21), (25), and (27), with probability 1, µ
(N)
t → µt, weakly

as N → ∞, uniformly in t, where µt is as in (19). Explicitly, we prove

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) −
∫

W
h(w)µt(dw × [y, 1])

∣∣∣∣ = 0, a.s.,(28)

for all y ∈ [0, 1] and bounded continuous function h : W → R.
Assume in addition that for a positive integer L and yi ∈ [0, 1), i = 1, 2, . . . , L,

ν
(N)
i = νi, N ∈ N, and lim

N→∞
y

(N)
i = yi , for i = 1, 2, . . . , L.(29)

Then, with probability 1, the tagged particle system

(Y (N)
1 (t), Y (N)

2 (t), . . . , Y (N)
L (t))

converges as N → ∞, uniformly in t ∈ [0, T ] to a limit (Y1(t), Y2(t), . . ., YL(t)). Here, for each
i = 1, 2, . . . , L, Yi is the unique solution to

Yi(t) = yi +
∫

s∈(0,t]

∫
(w,z)∈W×[Yi(s−).1]

w(z, s)µs(dw × dz) ds

−
∫

s∈(0,t]

∫
ξ∈[0,∞)

Yi(s−)1ξ∈[0,wi(Yi(s−),s)) νi(dξds),

i = 1, 2, . . . , L, t ∈ [0, T ].

(30)

�
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Theorem 2 implies propagation of chaos for the stochastic ranking processes. For each N all of
{Y (N)

i } are random and interact with each other and µ
(N)
t is also random. However, the limit µt

is deterministic. Furthermore, the randomness of the limit process Yi of a tagged particle depends
only on its associated Poisson random measure νi, and is independent of Yj or νj with j = i.

Incidentally, we proved almost sure convergence for µ
(N)
t in (28), while we made no assumptions

on the relation between the set of measures {ν(N)
i | i = 1, 2, . . . ,N} for different N . This is stronger

than the law of large numbers appearing in the context of random walks
1
N

N∑
i=1

Xi, where each Xi

is fixed for all N , while (28) corresponds to considering
1
N

N∑
i=1

X
(N)
i , where we assume no relation

among X
(N)
i for different N . Such a type of convergence is known for sums of real valued random

variables as complete convergence [14, 2, 3]. In this context, (19) is an example of complete
convergence for a sequence of measure valued random variables.

3 Infinite particle limit of flow driven stochastic ranking process.

3.1 Flow driven stochastic ranking process.

In this section, we introduce an intermediate model which we use to prove convergence of µ
(N)
t in

Theorem 2.
Let {wi}, {y(N)

i }, and {ν(N)
i } be as in the stochastic ranking process (7). Let θ ∈ ΘT be a

flow, and for each i = 1, 2, . . . ,N , let ν̃
(N,θ)
i be a point process of N in (147), with ν = ν

(N)
i and

ω = w̃
θ,wi,y

(N)
i

, where the last notation is as in (16) with w = wi and z = y
(N)
i . Define a system of

stochastic processes Y
(N,θ)
i , i = 1, 2, . . . ,N , by

Y
(N,θ)
i (t)

= y
(N)
i +

1
N

N∑
j=1

∫
s∈(0,t]

1
Y

(N,θ)
j (s−)>Y

(N,θ)
i (s−)

ν̃
(N,θ)
j (ds)

−
∫

s∈(0,t]
Y

(N,θ)
i (s−)ν̃(N,θ)

i (ds), i = 1, 2, . . . ,N, t � 0.

(31)

We will call this system, the stochastic ranking process driven by the flow θ.
The fluctuation of (31) is coupled to those of the stochastic ranking process of (3) via the set

of Poisson random measures {ν(N)
i }. Using (144) and (147), we have an expression of ν̃

(N,θ)
i using

ν
(N)
i . Define a sequence of stopping times, 0 = τ

(N,θ)
i,0 < τ

(N,θ)
i,1 < · · ·, by

τ
(N,θ)
i,0 = 0,

τ
(N,θ)
i,k+1 = inf{t > τ

(N,θ)
i,k | ν

(N)
i ({(s, ξ) ∈ (τ (N,θ)

i,k , T ] × [0,∞) |
0 � ξ � wi(Y

(N,θ)
i (s−), s)}) > 0}, k ∈ Z+.

(32)

τ
(N,θ)
i,k is the time that the particle i in the flow driven stochastic ranking process jumps to the top

for the k-th time. Put

γ
(N,θ)
i (t) =

{
(y(N)

i , 0), 0 � t < τ
(N,θ)
i,1 ,

(0, τ
(N,θ)
i,k ), τ

(N,θ)
i,k � t < τ

(N,θ)
i,k+1 , k = 1, 2, . . . .

(33)
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Using γ
(N,θ)
i (t), we have an expression

ν̃
(N,θ)
i (t) =

∫
s∈(0,t]

∫
ξ∈[0,∞)

1
ξ∈[0,wi(θ(γ

(N,θ)
i (s−),s−),s))

ν
(N)
i (dξ ds),(34)

and substituting (34) in (31) we further have

Y
(N,θ)
i (t) = y

(N)
i

+
1
N

N∑
j=1

∫
s∈(0,t]

∫
ξ∈[0,∞)

1
Y

(N,θ)
j (s−)>Y

(N,θ)
i (s−)

× 1
ξ∈[0,wj(θ(γ

(N,θ)
j (s−),s−),s))

ν
(N)
j (dξ ds)

−
∫

s∈(0,t]

∫
ξ∈[0,∞)

Y
(N,θ)
i (s−)1

ξ∈[0,wi(θ(γ
(N,θ)
i (s−),s−),s))

ν
(N)
i (dξ ds),

i = 1, 2, . . . ,N, t � 0.

(35)

This is to be compared with the (original) stochastic ranking process (3). We see that (35) is ob-
tained from (3) by replacing Y

(N)
j (s) appearing as a variable for wj by θ(γ(N,θ)

j (s), s), and otherwise,

by Y
(N,θ)
j (s).

3.2 Characteristic curve and distribution function.

For each i = 1, 2, . . . ,N and 0 � t0 � t, define an event J
(N,θ)
i (t0, t) ⊂ Ω by

J
(N,θ)
i (t0, t) = {ω ∈ Ω | ν̃

(N,θ)
i (t)(ω) > ν̃

(N,θ)
i (t0)(ω)},(36)

Since ν̃(N,θ) is increasing, the complement is

J
(N,θ)
i (t0, t)c = {ω ∈ Ω | ν̃

(N,θ)
i (t)(ω) = ν̃

(N,θ)
i (t0)(ω)}.(37)

On the event J
(N,θ)
i (t0, t)c, the contribution of the last term on the right hand side of (31) to the

difference Y
(N,θ)
i (t) − Y

(N,θ)
i (t0) is 0, hence Y

(N,θ)
i is non-decreasing in the interval [t0, t]. In other

words, J
(N,θ)
i (t0, t) of (36) is the event that the particle i jumps to the top y = 0 during (t0, t].

Define the characteristic curve for the stochastic ranking process driven by the flow θ by

Y
(N,θ)
C ((y0, t0), t) = y0 +

1
N

∑
j∈[1,N ]; Y

(N,θ)
j (t0)�y0

1
J

(N,θ)
j (t0,t)

,(38)

for (y0, t0) ∈ [0, 1] × [0, T ] and t � t0. For example,

Y
(N,θ)
C ((1, t0), t) = 1 , t � t0 � 0.(39)

Since NY
(N,θ)
j takes integer values, we can write (38) using (37) as

Y
(N,θ)
C ((y0, t0), t) = y0 +

[N (1 − y0)]
N

− 1
N

∑
j; Y

(N,θ)
j (t0)�y0

1
J

(N,θ)
j (t0,t)

c ,(40)

where [x] is the largest integer not exceeding x.
We note the following expression corresponding to (7).
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Lemma 3 (i) For t � t0 � 0 and 0 � y0 � 1, it holds that

Y
(N,θ)
C ((y0, t0), t) = y0 +

1
N

N∑
j=1

∫
s∈(t0,t]

∫
ξ∈[0,∞)

1
Y

(N,θ)
j (s−)�Y

(N,θ)
C ((y0,t0),s−)

1
ξ∈[0,wj(θ(γ

(N,θ)
j (s−),s),s))

ν
(N)
j (dξds),

(41)

(ii) It holds that
Y

(N,θ)
i (t) = Y

(N,θ)
C (γ(N,θ)

i (t), t), t ∈ [0, T ],(42)

where γ
(N,θ)
i is as in (33). �

Proof. Since on the event J
(N,θ)
i (t0, t)c, the contribution of the last term on the right hand side of

(31) to the difference Y
(N,θ)
i (t) − Y

(N,θ)
i (t0) disappears, Y

(N,θ)
i (t) − Y

(N,θ)
i (t0) and

Y
(N,θ)
C ((Y (N,θ)

i (t0), t0), t) − Y
(N,θ)
i (t0)

should satisfy the same equation for [t0, t] on J
(N,θ)
i (t0, t)c. This implies (41).

By definition (33), J
(N,θ)
i (t0, t)c holds if γ

(N,θ)
i (t) = (y0, t0). Hence (42) follows. �

In analogy to (5), for each positive integer N define a joint empirical distribution of jump rate
and position of particles on W × [0, 1] by

µ
(N,θ)
t =

1
N

N∑
i=1

δ
(wi,Y

(N,θ)
i (t))

t ∈ [0, T ].(43)

When integrated over position, we recover the distribution λ(N) of jump rates for the (original)
stochastic ranking process (23), independently of t and θ;

µ
(N,θ)
t (dw × [0, 1]) = λ(N)(dw).(44)

The initial distribution of µ
(N,θ)
t , found by substituting (31) at t = 0 to (43), coincide with that

of the original model µ
(N)
0 in (6):

µ
(N,θ)
0 = µ

(N)
0 .(45)

A set of spatial distribution functions ϕ(N,θ) is defined analogously to (8), by a convolution of
(38) and (43);

ϕ(N,θ)(dw, γ, t) = µ
(N,θ)
t (dw × [Y (N,θ)

C (γ, t), 1]),
γ = (y0, t0) ∈ [0, 1] × [0, T ], t � t0.

(46)

ϕ(N,θ)(dw, γ, t) denotes the empirical distribution of jump rates (intensity densities) of those parti-
cles which was in a downstream of y0 at time t0 that have not jumped to the top in the time period
(t0, t]. For t = t0 we have

ϕ(N,θ)(dw, (y0, t0), t0) = µ
(N,θ)
t0 (dw × [y0, 1]), (y0, t0) ∈ [0, 1] × [0, T ].(47)

ϕ(N,θ) is a refinement of Y
(N,θ)
C in the following sense. First, (46) and (43) imply

ϕ(N,θ)(dw, γ, t) =
1
N

N∑
j=1

1
Y

(N,θ)
j (t)�Y

(N,θ)
C (γ,t)

δwj (dw).
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Next, Y
(N,θ)
j (t) � Y

(N,θ)
C (γ, t) occurs if and only if the inequality holds at t = t0 and j does not

jump to the top in the interval (t0, t]. Hence (36) implies

ϕ(N,θ)(dw, (y0, t0), t) =
1
N

∑
j; Y

(N,θ)
j (t0)�y0

1
J

(N,θ)
j (t0,t)c δwj(dw).(48)

Comparing (48) with (40), we have

Y
(N,θ)
C (γ, t) = y0 +

[N(1 − y0)]
N

− ϕ(N,θ)(W,γ, t),

γ = (y0, t0) ∈ [0, 1] × [0, T ], t � t0.
(49)

The spatial distribution function ϕ(N,θ)(dw, γ, t) is defined for any γ = (y0, t0) ∈ [0, 1] × [0, T ]
satisfying t � t0, but is particularly important when γ ∈ Γt. In fact, both for the case γ = (y0, 0) ∈
Γi and the case γ = (0, t0) ∈ Γt we have

ϕ(N,θ)(dw, (y0, t0), t) =
1
N

∑
j; y

(N)
j �y0

1
J

(N,θ)
j (t0,t)c δwj(dw),

γ = (y0, t0) ∈ Γt, t ∈ [0, T ].

(50)

Note the conditions of the summation, which is non-random in (50), while is random in (48). Since
J

(N,θ)
j (t0, t) is independent of ν

(N)
i , i = j, (50) implies that ϕ(N,θ)(dw, γ, t) is an arithmetic average

of independent random variables, if γ ∈ Γt. With this fact, we restrict the domain of definition to
∆T of (12) in § 3.3.

3.3 Convergence of distribution function.

3.3.1 Statement of the theorem.

Here we will state a strong law of large numbers for the spatial distribution function ϕ(N,θ) of the
flow driven stochastic ranking process, uniform in initial point γ and time t.

For a bounded continuous function h : W → R, we put

Ch = sup
w∈W

|h(w)| < ∞,(51)

and use a notation
ϕ(N,θ)(h, γ, t) =

∫
W

h(w)ϕ(N,θ)(dw, γ, t).(52)

With (48) we have

ϕ(N,θ)(h, γ, t) =
1
N

∑
j; Y

(N,θ)
j (t0)�y0

h(wj) 1
J

(N,θ)
j (t0,t)c , γ = (y0, t0).(53)

As in (52) we also use a notation

ϕθ(h, γ, t) =
∫

W
h(w)ϕθ(dw, γ, t).(54)

for ϕθ in (17).
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Theorem 4 Assume (2), (21), (25), and (27). Then for any p > 0 there exists a positive constant
C depending only on p and δ, (and is independent of N , θ, and h,) such that for any bounded
continuous h : W → R,

E[ sup
(γ,t)∈∆T

∣∣∣∣ϕ(N,θ)(h, γ, t) − ϕθ(h, γ, t)
∣∣∣∣
2p

] � C C2p
h

N2pδ
, N ∈ N,(55)

holds, where Ch is as in (51). �

Theorem 1, Theorem 4 with h = 1W and θ = yC , and (49) imply the following.

Corollary 5 Under the assumptions of Theorem 4, for any p > 0 there exists a positive constant
C depending only on p and δ, such that

E[ sup
(γ,t)∈∆T

∣∣∣∣Y (N,yC)
C (γ, t) − yC(γ, t)

∣∣∣∣
2p

] � C

N2pδ
, N ∈ N.(56)

Among θ ∈ Θ, θ = yC is the only flow that satisfies (56). �

As in the proof of the main theorem Theorem 2, Theorem 4 implies convergence of joint empirical
distribution µ

(N,θ)
t to µyC ,t, a deterministic distribution determined by ϕyC

(h, γ, t). For θ = yC , the
stochastic ranking process driven by the flow θ converges to a limit with deterministic distribution,
but the resulting trajectories of particles are different from the given flow θ, due to the uniqueness
result of Theorem 1.

A proof of Theorem 4 is composed of 2 parts. In § 3.3.2 we prove that ϕ(N,θ) − E[ ϕ(N,θ) ]
converges to 0, using a strong uniform law of large numbers in [12]. In § 3.3.3 we prove that
E[ ϕ(N,θ) ] converges to ϕθ, using the estimates in [10]. Relevant results of [10] are summarized in
§ A for convenience.

3.3.2 Strong uniform law of large numbers.

Here we will prove the following.

Theorem 6 Assume (2), (21), (25), and (27). Then for any p and δ satisfying

p > 0, 0 < δ <
1
2

,(57)

there exists a positive constant C (independent of N , θ, and h,) such that for any bounded contin-
uous h : W → R

E[ sup
(γ,t)∈∆T

∣∣∣∣ϕ(N,θ)(h, γ, t) − E[ ϕ(N,θ)(h, γ, t) ]
∣∣∣∣
2p

] � C C2p
h

N2pδ
, N ∈ N,(58)

where Ch is as in (51). �

Proof. Put h± = (±h)∨ 0, so that h = h+ − h− decomposes the function h to positive and negative
parts. Applying (48), (12), (11), and triangular inequality in the form

(a + b)q � (2q−1 ∨ 1)(aq + bq), a � 0, b � 0, q > 0,



13

we have, with γ = (y0, t0) ∈ Γt,

E[ sup
((y0,t0),t)∈∆T

∣∣∣∣ϕ(N,θ)(h, γ, t) − E[ ϕ(N,θ)(h, γ, t) ]
∣∣∣∣
q

]

= E[ sup
((y0,t0),t)

∣∣∣∣ 1
N

∑
Y

(N,θ)
j (t0)�y0

(h+(wj) − h−(wj))

× (1
J

(N,θ)
j (t0,t)c −E[ 1

J
(N,θ)
j (t0,t)c ])

∣∣∣∣
q

]

� (2q−1 ∨ 1)E[ sup
((y0,t0),t)

∣∣∣∣ 1
N

∑
Y

(N,θ)
j (t0)�y0

h+(wj)

× (1
J

(N,θ)
j (t0,t)c −E[ 1

J
(N,θ)
j (t0,t)c ])

∣∣∣∣
q

]

+ (2q−1 ∨ 1)E[ sup
((y0,t0),t)

∣∣∣∣ 1
N

∑
Y

(N,θ)
j (t0)�y0

h−(wj)

× (1
J

(N,θ)
j (t0,t)c −E[ 1

J
(N,θ)
j (t0,t)c ])

∣∣∣∣
q

]

� (2q−1 ∨ 1) (R(N)
q,1,+ + R

(N)
q,1,− + R

(N)
q,2,+ + R

(N)
q,2,−),

(59)

where

R
(N)
q,1,± = E[ sup

t∈[0,T ]
sup

0�y0<1

∣∣∣∣ 1
N

∑
i; y

(N)
i �y0

h±(wi) (1
J

(N,θ)
i (0,t)c

−E[ 1
J

(N,θ)
i (0,t)c

])
∣∣∣∣
q

](60)

and

R
(N)
q,2,± = E[ sup

t∈[0,T ]
sup

0�t0<t

∣∣∣∣ 1
N

N∑
i=1

h±(wi) (1
J

(N,θ)
i (t0,t)c −E[ 1

J
(N,θ)
i (t0,t)c ])

∣∣∣∣
q

].(61)

To bound (60) and (61), we refer to the last theorem in [12, §2]. We reproduce the theorem in
a specific form of

Z
(N)
i (s, t) = a

(N)
i 1

ν
(N)
i (t)>ν

(N)
i (s)

in place of Z
(N)
i (s, t) in the reference.

Proposition 7 ([12, Theorem 7]) Let T > 0, and for each N ∈ N, let ν
(N)
i , i = 1. . . . ,N ,

be a sequence of independent random variables taking values in a space of non-negative valued
non-decreasing right continuous functions on [0, T ] with left limit. Let r > 0, and for N ∈ N,
let M (N) > 0 and let a

(N)
i and w

(N)
i , i = 1, . . . ,N , be non-negative sequences. Assume that

a
(N)
i � M (N), i = 1, . . . ,N , and that

|P[ ν
(N)
i (t2) > ν

(N)
i (t1) ] − P[ ν

(N)
i (s2) > ν

(N)
i (s1) ]|

� w
(N)
i (|t1 − s1|r + |t2 − s2|r),
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for 0 � t1 � t2 � T and 0 � s1 � s2 � T . Then for any δ ∈ (0,
1
2
) and p > 0,

E[ sup
t2∈[0,T ]

sup
0�t1<t2

∣∣∣∣ 1
N

N∑
i=1

a
(N)
i (1

ν
(N)
i (t2)>ν

(N)
i (t1)

−P[ ν
(N)
i (t2) > ν

(N)
i (t1) ])

∣∣∣∣
p

]1/p

� M (N)

N δ
21−1/q(Cq

q (2T (w(N))1/r + 1) + 22q)1/q,

N = N0, N0 + 1, . . . ,

(62)

where q = q(p, δ) = 3 ∨ r + 1
r

2δ

1 − 2δ
∨ p, N0 is the smallest integer satisfying N

rq/(2rq+2r+2)
0 � 2,

w(N) =
1
N

N∑
i=1

w
(N)
i , and Cq =

(
1
2
(4k)q +

2k

2k − q
(8k)q

)1/q

with k the smallest integer greater than

1
2
q, (In particular, q and N0 are independent of N , M (N), and w(N).) �

To bound R
(N)
q,2,± in (61), we apply Proposition 7 with ν

(N)
i = ν̃

(N,θ)
i and a

(N)
i = h±(wi). Note

that (152) and (16) with w = wi and z = y
(N)
i , and (1) imply

0 � − ∂

∂t
P[ ν̃

(N,θ)
i (t) = ν̃

(N,θ)
i (s) ] �

∥∥∥w̃
θ,wi,y

(N)
i

∥∥∥ � ‖wi‖T ,

0 � ∂

∂s
P[ ν̃

(N,θ)
i (t) = ν̃

(N,θ)
i (s) ] �

∥∥∥w̃
θ,wi,y

(N)
i

∥∥∥ � ‖wi‖T .
(63)

Recall (36) and (37). Comparing the left hand side of (62) with the right hand side of (61) with
q = 2p, we see that we can apply Proposition 7 to R

(N)
2p,2,± with

M (N) = Ch, r = 1, w
(N)
i = ‖wi‖T .(64)

Proposition 7 then implies that for any δ ∈ (0,
1
2
) and p > 0,

R
(N)
2p,2,± � C2p

h

N2pδ
22p−1

(
Cq

q (2Tw(N) + 1) + 22q

)2p/q

, N > 22+(4/q),(65)

where
q = q(p, δ) = 3 ∨ 4δ

1 − 2δ
∨ (2p),

w(N) =
1
N

N∑
i=1

‖wi‖T =
∫

W
‖w‖T λ(N)(dw),

and Cq is a positive constant depending only on q.
Combining (64)，(65), and (27), we see that there exists a positive constant Cp,δ independent

of N , θ, and h, such that

R
(N)
2p,2,± � Cp,δ C2p

h

N2pδ
, N ∈ N.(66)
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To bound R
(N)
q,1,± in (60), we first note that

R
(N)
q,1,±

�
N∑

j=1

E[ sup
t∈[0,T ]

∣∣∣∣ 1
N

∑
i; N y

(N)
i �j−1

h±(wi) (1
J

(N,θ)
i (0,t)c

−E[ 1
J

(N,θ)
i (0,t)c

])
∣∣∣∣
q

]

�
N∑

j=1

E[ sup
t∈[0,T ]

sup
0�t0<t

∣∣∣∣ 1
N

∑
i; N y

(N)
i �j−1

h±(wi) (1
J

(N,θ)
i (t0,t)c −E[ 1

J
(N,θ)
i (t0,t)c ])

∣∣∣∣
q

].

(67)

Comparing (67) with (61), we see that we can apply Proposition 7 with ν
(N)
i = ν̃

(N,θ)
i and

a
(N)
i = h±(wi)1N y

(N)
i �j−1

,

and (64), to the j-th term of the summation in the right hand side of (67), in a similar way as we
did to R

(N)
2p,2,±. Using monotonicity of Lp norms with respect to p before applying Proposition 7,

we have, for q0 � 2p and δ′ ∈ (0,
1
2
),

R2p,1,± � R
2p/q0

q0,1,± �
(Cq0/2,δ′ C

q0

h )2p/q0

N2pδ′−2p/q0
, N ∈ N,

in place of (66). (The extra factor N compared to (66) is from the summation with respect to j in

(67).) Now choose δ′ and q0 to satisfy δ < δ′ <
1
2

and 0 <
1
q0

< δ′ − δ to find

R2p,1,± � R
2p/q0

q0,1,± �
(Cq0/2,δ′ C

q0

h )2p/q0

N2pδ
, N ∈ N.(68)

Theorem 6 finally follows from (59), (68), and (66). �

3.3.3 Convergence of expectation.

Here we complete a proof of Theorem 4.

Lemma 8 Assume (27). Then, if h : W → R is bounded and continuous,

lim
N→∞

∫
W

h(w) ‖w‖T λ(N)(dw) =
∫

W
h(w) ‖w‖T λ(dw).(69)

�

Proof. Note first that for M > 0
a = (a ∧ M) + (a − M)+(70)

holds. Since w �→ ‖w‖T ∧ M is bounded and continuous, (27) (weak convergence) implies

lim
N→∞

∫
W

‖w‖T ∧ M λ(N)(dw) =
∫

W
‖w‖T ∧ M λ(dw),(71)
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which, with convergence of expectation in (27), further implies

lim
N→∞

∫
W

(‖w‖T − M)+ λ(N)(dw) =
∫

W
(‖w‖T − M)+ λ(dw).(72)

On the other hand, dominated convergence theorem, 0 � (‖w‖T − M)+ � ‖w‖T, and (25) imply

lim
M→∞

∫
W

(‖w‖T − M)+λ(dw) = 0.

Hence, for any ε > 0 there exists M > 0 such that
∫

W
(‖w‖T − M)+λ(dw) < ε. This and (72)

further imply that there exists N0 > 0 such that∫
W

(‖w‖T − M)+λ(N)(dw) < 2ε, N � N0 .

Put C = sup
w∈W

|h(w)| < ∞. Then

|
∫

W
h(w) ‖w‖T λ(N)(dw) −

∫
W

h(w) ‖w‖T λ(dw)|

� |
∫

W
‖w‖T ∧ M λ(N)(dw) −

∫
W

‖w‖T ∧ M λ(dw)|

+ C

∫
W

(‖w‖T − M)+λ(N)(dw) + C

∫
W

(‖w‖T − M)+λ(dw)

� |
∫

W
‖w‖T ∧ M λ(N)(dw) −

∫
W

‖w‖T ∧ M λ(dw)| + 3Cε.

This and (71) imply

lim
N→∞

|
∫

W
h(w) ‖w‖T λ(N)(dw) −

∫
W

h(w) ‖w‖T λ(dw)| � 3Cε.

Since the left hand side is independent of N , M , and ε, it must be 0. �

Proof of Theorem 4. Let h : W → R be a bounded continuous function, and put Ch = sup
w∈W

|h(w)|
as in (51). Theorem 6 implies that to prove Theorem 4, it suffices to prove

sup
(γ,t)∈∆T

∣∣∣∣E[ ϕ(N,θ)(h, γ, t) ] − ϕθ(h, γ, t)
∣∣∣∣ � C Ch

N δ
, N ∈ N,(73)

for C depending only on p and δ (independent of N , θ, and h).
Comparing the definition of ν̃

(N,θ)
i given above (31) with that of ν̃θ,w,z given below (17), we see

that ν̃
(N,θ)
i and ν̃

θ,wi,y
(N)
i

have identical distribution. Therefore, using (37) and (6) in (53), we have,

for t � t0,

E[ ϕ(N,θ)(h, (y0, t0), t) ] =
∫

W×[y0,1]
h(w) P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ]µ(N)

0 (dw × dz).(74)
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Let γ = (y0, t0) ∈ Γ and (γ, t) ∈ ∆T . (74) and (17) imply

E[ ϕ(N,θ)(h, γ, t) ] − ϕθ(h, γ, t)

=
∫

W×[y0,1]
h(w) P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ] (µ(N)

0 (dw × dz) − µ0(dw × dz)).

Hence,
sup

(γ,t)∈∆T

|E[ ϕ(N,θ)(h, γ, t) ] − ϕθ(h, γ, t)|

� sup
((y0,t0),t)∈∆T

∣∣∣∣
∫

W×[y0,1]
h̃t0,t(w, z)(µ(N)

0 (dw × dz) − µ0(dw × dz)
∣∣∣∣,(75)

where
h̃t0,t(w, z) = h(w) P[ ν̃θ,w,z(t) = ν̃θ,w,z(t0) ].(76)

Choose the set H in (21) as the set of the functions h̃t0,t in (76):

H = {h̃t0,t : W × [0, 1] → R | 0 � t0 � t � T}.(77)

Uniform boundedness of the functions in H is obvious. If we prove that H is also equicontinuous,
then by the assumption of Theorem 4 the consequence of (21) holds, which implies

sup
y0∈[0,1]

sup
0�t0�t�T

∣∣∣∣
∫

W×[y0,1]
h̃t0,t(w, z)(µ(N)

0 (dw × dz) − µ0(dw × dz)
∣∣∣∣ � C Ch

N δ
,

N ∈ N.

Applying this estimate to (75), we have (73), which proves Theorem 4.
We are left with proving equicontinuity of H.
First, for (w, z) ∈ W × [0, 1] and w̃θ,w,z as in (16) (i.e., the ‘intensity density’ for ν̃θ,w,z), and

0 � s � t � T , put

Ωθ,w,z(s, t) =
∫ t

s
w̃θ,w,z(s, u) du and Ω̃w(s, t) =

∫ t

s
w(1, u) du.(78)

Then (2) and a mean value theorem imply

w(1, t) − CW � w̃θ,w,z(s, t) � w(1, t) + CW ,(79)

and
e−Ω̃w(s,t)−CW (t−s) � e−Ωθ,w,z(s,t) � e−Ω̃w(s,t)+CW (t−s).(80)

Note also an elementary formula in [10, (53)]

∫
0�u1�u2�···�uk�s

k∏
i=1

f(ui)du1 du2 . . . duk =
1
k!

(∫ s

0
f(v)dv

)k

,(81)

valid for any integrable function f : R → R, s � 0, and k = 1, 2, . . .,
A proof of equicontinuity of H now goes in a similar way as that of [10, Lemma 12]. Applying

(151) to (76), we have

h̃t0,t(w, z) = h(w)
∑
k�0

∫
0=:uk<uk−1<uk−2<···<u1<u0�t0

× e−
�k−1

i=0 Ωθ,w,z(ui+1,ui)−Ωθ,w,z(u0,t)

(k−1∏
i=0

w̃θ,w,z(ui+1, ui) dui

)
.

(82)
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Using (79), (80), and (78) to (82), while noting that (16) implies that w̃θ,w,z(s, t) and Ωθ,w,z(s, t) is
independent of z if s > 0, we have

|h̃t0,t(w, z′) − h̃t0,t(w, z)| � I11(z, z′) + I12(z, z′),

where
I11(z, z′) = Che−Ω̃w(0,t)+CW t

∑
k�1

∫
0=:uk<uk−1<uk−2<···<u1<u0�t0

×
(k−2∏

i=0

(w(1, ui) + CW )dui

)
× |w̃θ,w,z′(0, uk−1) − w̃θ,w,z(0, uk−1)|duk−1 ,

and
I12(z, z′) = Ch

∑
k�0

∫
0=:uk<uk−1<uk−2<···<u1<u0�t0

e−Ω̃w(uk−1,t)+CW (t−uk−1)

×
(k−1∏

i=0

(w(1, ui) + CW )dui

)
× |e−Ωθ,w,z′ (0,uk−1) − e−Ωθ,w,z(0,uk−1)|duk−1 .

Using (16), (2), (81), and (78), we have

I11(z, z′) � ChCW e−Ω̃w(t0,t)+CW (t+t0)

∫ t0

0
|θ((z′, 0), v) − θ((z, 0), v)|dv

� ChCW e2CW T

∫ T

0
|θ((z′, 0), v) − θ((z, 0), v)|dv.

Using in addition

|e−x′ − e−x| = e−(x′∧x) − e−(x′∨x) = e−(x′∧x) (1 − e−|x′−x|)
� e−(x′∧x)|x′ − x| � e−xe|x

′−x||x′ − x|,(83)

which follows from |x′ − x| = (x′ ∨ x) − (x′ ∧ x) � x − (x ∧ x′), we similarly have

I12(z, z′) � ChCW e−Ω̃w(t0,t)+CW (t+t0)

∫ t0

0
|θ((z′, 0), v) − θ((z, 0), v)|dv

× eCW

� t0
0 |θ((z′,0),v)−θ((z,0),v)|dv

� ChCW e2CW T

∫ T

0
|θ((z′, 0), v) − θ((z, 0), v)|dv

× eCW

� T
0

|θ((z′,0),v)−θ((z,0),v)|dv .

Since the right hand sides of the bounds for I11 and I12 are uniform in t0 and t, these prove
equicontinuity in the variable z ∈ [0, 1] of functions h̃t0,t(w, z) in H.

In a similar way as the proof of equicontinuity with respect to z, we have

|h̃t0,t(w′, z) − h̃t0,t(w, z)| � I21(w,w′) + I22(w,w′),

where
I21(w,w′) = Ch

∑
k�0

∫
0=:uk<uk−1<uk−2<···<u1<u0�t0

× |e−X(w′) − e−X(w)|
(k−1∏

i=0

(w′(1, ui) + CW )dui

)
duk−1 ,
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with

X(w) =
k−1∑
i=0

Ωθ,w,z(ui+1, ui) + Ωθ,w,z(u0, t),

and
I22(w,w′) = Che−Ω̃w(0,t)+CW t

∑
k�1

∫
0=:uk<uk−1<uk−2<···<u1<u0�t0

×
∣∣∣∣
k−1∏
i=0

w̃θ,w′,z(ui+1, ui) −
k−1∏
i=0

w̃θ,w,z(ui+1, ui)
∣∣∣∣

k−1∏
i=0

dui .

Note that (78) with (1) implies

|Ωθ,w′,z(u, v) − Ωθ,w,z(u, v)| �
∥∥w′ − w

∥∥
T

(v − u), 0 � u � T.

Using this, (83), and (81) in I21(w,w′), we further have

I21(w,w′) � Che−Ω̃w(0,t)+CW t e

∥∥w′ − w
∥∥

T
t ∥∥w′ − w

∥∥
T

t eΩ̃w′ (0,t0)+CW t0

� Che2CW T e

∥∥w′ − w
∥∥

T
T ∥∥w′ − w

∥∥
T

T.

With a similar argument, we also have

I22(w,w′) � Che−Ω̃w(0,t)+CW t
∑
k�1

k−1∑
j=0

∫
0=:uk<uk−1<uk−2<···<u1<u0�t0

×
(j−1∏

i=0

w̃θ,w′,z(ui+1, ui)
)
|w̃θ,w′,z(uj+1, uj) − w̃θ,w,z(uj+1, uj)|

×
( k−1∏

i=j+1

w̃θ,w,z(ui+1, ui)
) k−1∏

i=0

dui

� Che−Ω̃w(0,t)+CW t
∥∥w′ − w

∥∥
T

∫ t0

0
eΩ̃w(0,v)+CW veΩ̃w′ (v,t0)+CW (t0−v) dv

� Che−Ω̃w(0,t)+CW t
∥∥w′ − w

∥∥
T

×
(

eΩ̃w(0,t0)t0 +
∫ t0

0
eΩ̃w′ (0,v) |eΩ̃w′ (v,t0) − eΩ̃w(v,t0)| dv

)
� Che2CW T

∥∥w′ − w
∥∥

T
T (1 + e

∥∥w′ − w
∥∥

T
T ∥∥w′ − w

∥∥
T

T ).

Since the right hand sides of the bounds for I21 and I22 are uniform in t0 and t, these prove
equicontinuity of H in w ∈ W .

This completes a proof of equicontinuity of H, hence a proof of Theorem 4. �

4 Hierarchy of multi time Gronwall inequality.

The following is a simple form of Gronwall’s inequality.

Theorem 9 Let T be a positive constant, and a and c be non-negative constants. If x : [0, T ] → R

is an integrable function, satisfying

x(t) � a + c

∫ t

0
x(s) ds, t ∈ [0, T ],
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then
x(t) � a ect, t ∈ [0, T ],(84)

holds. �

The following is a generalization of Theorem 9 to functions of more than 1 variables, where the
case q = 1 is Theorem 9.

Theorem 10 Let T be a positive constant, q a positive integer, and a and c non-negative constants.
If x : [0, T ]q → R is an integrable function of q variables, satisfying

x(t1, . . . , tq) � a ec (t1+···+tq) 1
q

q∑
i=1

e−cti

+
c

q

q∑
i=1

∫ ti

0
(x(t1, . . . , tq)|ti=u) du, (t1, . . . , tq) ∈ [0, T ]q,

then
x(t1, . . . , tq) � a ec (t1+···+tq), (t1, . . . , tq) ∈ [0, T ]q,(85)

holds. �

To prove Theorem 10, we start with the homogeneous case.

Theorem 11 Let T be a positive constant, q a positive integer, and c a non-negative constant. If
x : [0, T ]q → R is an integrable function of q variables, satisfying

x(t1, . . . , tq) � c

q∑
i=1

∫ ti

0
(x(t1, . . . , tq)|ti=s) ds, (t1, . . . , tq) ∈ [0, T ]q,(86)

then
x(t1, . . . , tq) � 0, (t1, . . . , tq) ∈ [0, T ]q,(87)

holds. �

To prove Theorem 11, we introduce a notation

(Ai,ky)(t1, . . . , tq)

=

⎧⎨
⎩

1
(k − 1)!

∫ ti

0
(ti − s)k−1 (y(t1, . . . , tq))|ti=s ds, k = 1, 2, 3, . . . ,

y(t1, . . . , tq) (i.e., Ai,0 = id), k = 0,

(88)

for integrable function y : [0, T ]q → R in q variables and i = 1, . . . , q. Ai,k, k ∈ Z+, i = 1, 2, . . . , q,
are commutative operators on the set of integrable functions. In fact, commutativity is obvious for
k = 0, and by induction in k we have

Ai,kAi,� = Ak+�
i,1 = Ai,k+� = Ai,�Ai,k,(89)

and Fubini’s theorem implies for k� > 0 and i = j

(Ai,kAj,�y)(t1, . . . , tq)

=
1

(k − 1)!
1

(� − 1)!

∫ ti

0
ds

∫ tj

0
du (ti − s)k−1

×
(
(tj − u)�−1 (y(t1, . . . , tq))|tj=u

)
|ti=s

= (Aj,�Ai,ky)(t1, . . . , tq),
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which prove
Ai,kAj,� = Aj,�Ai,k, k, � ∈ Z+, i, j ∈ {1, . . . , q}.(90)

Lemma 12 Under the assumptions of Theorem 11,

x(t1, . . . , tq) � cN
∑

(k1,...,kq)∈�q+;

k1+···+kq=N

(Aq,kq Aq−1,kq−1 · · · A1,k1 x)(t1, . . . , tq), N ∈ Z+,(91)

holds. �

Proof. The case N = 1 of (91) is the assumption (86) itself. Assume that (91) holds for some N .
Substituting (86) in (91), and noting that sums, integrations, and multiplication of non-negative
reals have monotonicity, we have

x(t1, . . . , tq) � cN+1
q∑

i=1

∑
(k1,...,kq)∈�q

+
;

k1+···+kq=N

(Aq,kq Aq−1,kq−1 · · · A1,k1 Ai,1x)(t1, . . . , tq).

Using (89) in the form Ai,ki
Ai,1 = Ai,ki+1, we have (87) for N replaced by N + 1. �

Proof of Theorem 11. For notational simplicity, put −→
t = (t1, . . . , tq) in this proof. The operator

Ai,k in (88) satisfies

(Ai,ky)(−→t ) � tki
k!

sup−→
t ∈[0,T ]q

y(−→t ), −→
t ∈ [0, T ]q,

for a integrable function y, hence (91) implies

x(−→t ) � cN
∑

(k1,...,kq)∈�q+;

k1+···+kq=N

q∏
i=1

tki
i

ki!
sup−→

t ∈[0,T ]q

x(−→t ), −→
t ∈ [0, T ]q, N ∈ N.(92)

For an arbitrary ε > 0, let −→
t 0 = (t0,1, . . . , t0,q) ∈ [0, T ]q be a vector (independent of N) such that

x(−→t 0) � sup−→
t ∈[0,T ]q

x(−→t ) − ε holds. Put

aN = cN
∑

(k1,...,kq)∈�q+;

k1+···+kq=N

q∏
i=1

tki
0,i

ki!
.

Then (92) implies
sup−→

t ∈[0,T ]q

x(−→t ) � x(−→t 0) + ε � aN sup−→
t ∈[0,T ]q

x(−→t ) + ε,

hence
sup−→

t ∈[0,T ]q

x(−→t ) (1 − aN ) � ε

holds. We see ∞∑
N=0

aN �
∞∑

N=0

∑
(k1,...,kq)∈�q+;

k1+···+kq=N

q∏
i=1

(ct0,i)ki

ki!
=

q∏
i=1

ect0,i < ∞,
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so that, in particular, lim
N→∞

aN = 0, which implies 1 − aN � 1
2

for large N . Hence

sup−→
t ∈[0,T ]q

x(−→t ) � 2ε,

which proves (87). �

Proof of Theorem 10. Note that

x1(s1, . . . , sq) = a ec (s1+···+sq)(93)

satisfies
x1(s1, . . . , sq) = e−csix1(s1, . . . , sq) + c

∫ si

0
(x1(s1, . . . , sq)|si=u) du,

(s1, . . . , sq) ∈ [0, t]q, i = 1, 2, . . . , q.
(94)

Subtracting x1(s1, . . . , sq) from (85), and then using (94), we have

x(t1, . . . , tq) − x1(t1, . . . , tq) � c

q

q∑
i=1

∫ ti

0
(x(t1, . . . , tq) − x1(t1, . . . , tq))|ti=s ds,

(t1, . . . , tq) ∈ [0, T ]q,

which, with Theorem 11 and (93) implies (85). �

Finally, we give a result to be used in the proof of the main theorem in § 5 which contains
recursion with respect to the number of variables q and a nonlinear term.

Theorem 13 Let T be a positive constant, d be a non-negative constant satisfying d � 1, and for
each positive integer q let aq, bq, and cq be non-negative constants. Assume that, for a series of
non-negative valued integrable functions xq : [0, T ]q → [0,∞), q ∈ Z+,

x0 = 1,

xq(t1, . . . , tq) � aq

q∑
i=1

xq−1(t1, . . . , ti, . . . , tq)d

+ bq

q∑
i=1

xq−1(t1, . . . , ti, . . . , tq)

+ cq

q∑
i=1

∫ ti

0
(xq(t1, . . . , tq)|ti=s) ds,

(t1, . . . , tq) ∈ [0, T ]q, q ∈ N,

(95)

hold. Put
c̃q = max

1�k�q
kck , q ∈ N,

and define a sequence of non-negative constants gq, q = 0, 1, 2, . . ., recursively by

g0 = 1, gq = q (aq gd
q−1 + bq gq−1), q ∈ N.

Then
xq(t1, . . . , tq) � gq ec̃q (t1+···+tq), (t1, . . . , tq) ∈ [0, T ]q, q ∈ N,(96)

holds. �
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Proof. If q = 1, (95) reads x1(t1) � (a1 + b1) + c1

∫ t1

0
x1(s) ds, hence Theorem 9 implies x1(t1) �

g1e
c1t1 , which proves (96) for q = 1.
Let q � 2 and assume that (96) holds for xq−1 , as

xq−1(t1, . . . , tq−1) � gq−1e
c̃q−1(t1+···+tq−1).

This and (95) for xq and d � 1 imply

xq(s1, . . . , sq) � q(aqg
d
q−1 + bqgq−1) ec̃q−1 (s1+···+sq) 1

q

q∑
i=1

e−c̃q−1si

+ qcq
1
q

q∑
i=1

∫ si

0
(xq(s1, . . . , sq)|si=u) du,

which, with Theorem 10, implies (96) for xq. �

5 Proof of the main theorem.

5.1 Convergence of the spatial distribution function.

Here we will prove the essential part of the infinite particle limit, the convergence of spatial distri-
bution function.

In analogy to (36), define, for each i = 1, 2, . . . ,N and 0 � t0 � t � T and 0 � y0 � 1,

J
(N)
i (t0, t) = {ω ∈ Ω | ν̃

(N)
i (t)(ω) > ν̃

(N)
i (t0)(ω)}.(97)

By similar arguments as for (48) and (38), ϕ(N) in (8) and Y
(N)
C in (9) respectively satisfies

ϕ(N)(dw, (y0, t0), t) =
1
N

∑
j; Y

(N)
j (t0)�y0

1
J

(N)
j (t0,t)c δwj(dw),(98)

and
Y

(N)
C ((y0, t0), t) = y0 +

1
N

∑
j; Y

(N)
j (t0)�y0

1
J

(N)
j (t0,t)

.(99)

Theorem 14 Assume (2), (21), (25), and (27). Then there exists δ′ > 0 and an integer p0

satisfying 2p0δ
′ > 1, such that for any integer p � p0 there exists a positive constant C depending

only on p and δ′, (independent of N and h,) such that for any bounded continuous h : W → R

E[ sup
(γ,t)∈∆T

∣∣∣∣ϕ(N)(h, γ, t) − ϕyC
(h, γ, t)

∣∣∣∣
2p

] � C C2p
h

N2pδ′ , N ∈ N,(100)

holds, where Ch is as in (51). �

Note that (9) and (18) with θ = yC imply

Y
(N)
C (γ, t) − yC(γ, t) =

[N(1 − y0)]
N

− (1 − y0) + ϕyC
(W,γ, t) − ϕ(N)(W,γ, t).
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Applying (a + b)2p � 22p−1(a2p + b2p), valid for a, b � 0 and 2p � 1, Theorem 14 with h(w) = 1,
w ∈ W , therefore implies

E[ sup
(γ,t)∈∆T

∣∣∣∣Y (N)
C (γ, t) − yC(γ, t)

∣∣∣∣
2p

] � 22p−1C

N2pδ′ +
22p−1

N2p
, N ∈ N,(101)

with the assumptions and notations of the Theorem.

5.1.1 Coupling of the original and the flow driven model.

In view of Theorem 4, it suffices to prove the following for Theorem 14 to hold.

Theorem 15 Assume (2), (21), (25), and (27), and let δ be as in (21). Then there exists δ′ > 0
and an integer p0 satisfying 2p0δ

′ > 1, such that for any integer p � p0 there exists a positive
constant C, (independent of N and h,) such that for any bounded continuous h : W → R

E[ sup
((y0,t0),t)∈∆T

∣∣∣∣ϕ(N)(h, γ, t) − ϕ(N,yC)(h, γ, t)
∣∣∣∣
2p

] � C C2p
h

N2pδ′ , N ∈ N,(102)

where Ch is as in (51). �

For t ∈ [0, T ] and i ∈ {1, 2, . . . ,N}, put

w̃
(N)
i,∧ (t) = wi(Y

(N)
i (t−), t) ∧ wi(yC(γ(N,yC)

i (t−), t), t),(103)

and
w̃

(N)
i,∨ (t) = wi(Y

(N)
i (t−), t) ∨ wi(yC(γ(N,yC)

i (t−), t), t),(104)

and denote the event that the i-th particle Y
(N)
i (s) of (3) and Y

(N,yC)
i (s) of (35) jump to top at

same times in the interval (t0, t] by

K(N)
i (t0, t) = {ω ∈ Ω | ν

(N)
i ({(s, ξ) | w̃

(N)
i,∧ (s) < ξ � w̃

(N)
i,∨ (s), s ∈ (t0, t] }) = 0}.(105)

Fix a bounded continuous function h : W → R, and let Ch be as in (51). Using the definitions
(98) and (53), put

∆ϕ(N)(γ, t) = ϕ(N)(h, γ, t) − ϕ(N,θ)(h, γ, t)

=
1
N

∑
j; y

(N)
j �y0

h(wj)(1J
(N)
j (t0,t)c −1

J
(N,θ)
j (t0,t)c),

γ = (y0, t0) ∈ Γt, t ∈ [0, T ].

(106)

Then (105) and (51) imply,

|∆ϕ(N)(γ, t)| � Ch

N

N∑
j=1

1K(N)
j (t0,t)c , γ = (y0, t0) ∈ Γt, t ∈ [0, T ].

The monotonicity of K(N)
j (t0, t)c with respect to t and t0 further implies

sup
(γ,t)∈∆T

|∆ϕ(N)(γ, t)| � Ch

N

N∑
i=1

1K(N)
i (0,T )c ,(107)

Proof of Theorem 15 therefore reduces to evaluation of the event K(N)
i (0, T ).
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5.1.2 Event with different jumps to top.

As an analog of (32), define a sequence of stopping times, 0 = τ
(N)
i,0 < τ

(N)
i,1 < · · ·, by

τ
(N)
i,0 = 0,

τ
(N)
i,k+1 = inf{t > τ

(N)
i,k | ν

(N)
i ({(s, ξ) ∈ (τ (N)

i,k , T ] × [0,∞) |
0 � ξ � wi(Y

(N)
i (s−), s)}) > 0}, k ∈ Z+.

(108)

τ
(N)
i,k is the time that the particle i in the (original) stochastic ranking process jumps to the top for

the k-th time. A corresponding analog of (33) is

γ
(N)
i (t) =

{
(y(N)

i , 0), 0 � t < τ
(N)
i,1 ,

(0, τ
(N)
i,k ), τ

(N)
i,k � t < τ

(N)
i,k+1, k = 1, 2, . . . .

(109)

A property corresponding to (42) then is

Y
(N)
i (t) = Y

(N)
C (γ(N)

i (t), t), t ∈ [0, T ],(110)

which can be proved in a similar way as a proof of (42) in Lemma 3. This decomposition in
particular decomposes the dependence as random variables; if we temporarily denote by X ∈ F ,
a fact that a random variable X : Ω → R is F-measurable, and denote by σ[Z] a sigma algebra
generated by a random variable Z, we have

Y
(N)
C ((y0, t0), t) ∈ σ[{ν(N)

j | Y
(N)
j (t0) > y0}],

γ
(N)
i ∈ σ[{τ (N)

i,k ∧ t | k ∈ N}].(111)

Define an analog of the stopping times (108) using (103) by

τ
(N)
i,∧,0 = 0,

τ
(N)
i,∧,k = inf{t > τ

(N)
i,∧,k−1 | ν

(N)
i ({(ξ, s) | 0 � ξ � w̃

(N)
i,∧ (s), 0 � s � t}) > 0},

k ∈ N,

(112)

and denote by σ
(N)
i , the time that the particle pair with label i of the original model and the flow

driven model have different jumps to the top for the first time;

σ
(N)
i = inf{t ∈ [0, T ] | K(N)

i (0, t)c}.(113)

The definition implies
τ

(N)
i,k < σ

(N)
i ⇒ τ

(N)
i,∧,k = τ

(N)
i,k = τ

(N,yC)
i,k ,(114)

where τ
(N,yC)
i,k is defined in (32), with θ = yC . Indepndence of ν

(N)
i (A) and ν

(N)
i (B) for the exclusive

events A and B implies
{τ (N)

i,∧,k | k ∈ Z+} ⊥ σ
(N)
i .(115)

Using (104), (103), (2)，and a ∨ b = |a − b| + a ∧ b, we have

{(ξ, s) ∈ R
2 | w̃

(N)
i,∧ (s) < ξ � w̃

(N)
i,∨ (s), 0 < s � t}

⊂ {(ξ, s) ∈ R
2 | 0 � ξ − w̃

(N)
i,∧ (s) � CW |Y (N)

i (s) − yC(γ(N,yC)
i (s), s)|,

0 < s � t}
⊂

∞⋃
k=1

{(ξ, s) ∈ R
2 | 0 � ξ − w̃

(N)
i,∧ (s) � CW |Y (N)

i (s) − yC(γ(N,yC )
i (s), s)|,

t ∧ τ
(N)
i,∧,k−1 < s � t ∧ τ

(N)
i,∧,k}.

(116)
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Note that for each i

Y
(N)
i (τ (N)

i,k−1) = Y
(N,yC)
i (τ (N)

i,k−1) = 0, on τ
(N)
i,k−1 < σ

(N)
i .

Note also that the definition (113) implies {σ(N)
i > s} = K(N)

i (0, s). Hence, (110), (42), (99), and
(38) imply, with similar arguments for deriving (107) from (105),

|Y (N)
i (s) − Y

(N,yC)
i (s)| = |Y (N)

C (γ(N)
i (s), s) − Y

(N,yC)
C (γ(N)

i (s), s)|
=

1
N

|
∑
j �=i

(1
(J

(N)
j (τ

(N)
i,k−1,s))c −1

(J
(N)
j (τ

(N,yC )

i,k−1 ,s))c
)|

� 1
N

∑
j �=i

1K(N)
j (τ

(N)
i,k−1,s)c

on K(N)
i (0, s), τ

(N)
i,k−1 � s < τ

(N)
i,k .

This with (116) then implies

K(N)
i (0, t)c

⊂
∞⋃

k=1

(
{ω ∈ Ω | ν

(N)
i ({(s, ξ) | 0 � ξ − w̃

(N)
i,∧ (s)

� CW |Y (N,yC)
i (s) − yC(γ(N,yC)

i (s), s)|

+
CW

N

∑
j �=i

1K(N)
j (τ

(N)
i,k−1,s)c ,

t ∧ τ
(N)
i,∧,k−1 < s � t ∧ τ

(N)
i,∧,k}) > 0 }

∩ K(N)
i (0, τ

(N)
i,k−1)

)
.

(117)

5.1.3 Application of Gronwall hierarchy.

For q = 1, 2, . . . ,N and ti ∈ [0, T ], i = 1, . . . , q, put

X(N)
q (t1, . . . , tq) = max

{i1,...,iq}⊂{1,...,N}
E[

q∏
α=1

1K(N)
iα

(0,tα)c ].(118)

(106), (107), and (118) imply that to prove Theorem 15, it suffices to find δ′ > 0 and integer p0

satisfying 2p0δ
′ > 1, such that for any integer p � p0,

1
N2p

2p∑
q=1

CN qd(2p, q)X(N)
q (T, . . . , T ) � C

N2pδ′ ,(119)

for some C > 0 independent of N . Here, d(r, q) is the number of surjections from a finite set of
size r to a set of size q, which is determined inductively by

d(r, 1) = 1, and d(r, q) = qr −
q−1∑
k=1

Cq kd(r, q − k), q = 2, 3, . . . , r.(120)
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Fix q and {i1, . . . , iq} in the right hand side of (118). Let α ∈ {1, . . . , q} be the suffix such that
y

(N)
iα

is the smallest among y
(N)
i1

, . . ., y
(N)
iq

, and put i0 = iα. At times τ
(N)
i0,k , k ∈ Z+, the particle i0

is at the top position, namely, for iα = i0,

Y
(N)
i0

(τ (N)
i0,k ) = 0 < Y

(N)
iα

(τ (N)
i0,k ), k = 1, 2, . . . ,

Y
(N)
i0

(τ (N)
i0,0 ) = Y

(N)
i0

(0) = y
(N)
i0

< y
(N)
iα

= Y
(N)
iα

(τ (N)
i0,0 ).

Hence up to the first jump to the top, each Y
(N)
iα

(t) with iα = i0 is independent of νi0 . Therefore,

E[
q∏

α=1

1K(N)
iα

(0,tα)c ]

= E[
∏

α; iα �=i0

1
(K(N)

iα
(0,tα))c

P[ (K(N)
i0

(0, t0))c | {νj , j = i0} ∪ {τ (N)
i0,∧,k} ] ],

where P[ · | {νj , j = i0} ∪ {τ (N)
i0,∧,k} ] denotes conditional probability conditioned on the sigma

algebra generated by νj , j = i0, and τ
(N)
i0,∧,k, k ∈ N. This with (115), (114), (117), and

P[ ν(A) > 0 ] = 1 − e−|A| � |A|
for a unit Poisson random measure ν, further leads to

E[
q∏

α=1

1K(N)
iα

(0,tα)c ]

� E[
∏

α; iα �=i0

1
(K(N)

iα
(0,tα))c

∞∑
k=1

1K(N)
i0

(0,t0∧τ
(N)
i0,k−1)

×
(∫ t0∧τ

(N)
i0,∧,k

t0∧τ
(N)
i0,∧,k−1

CW |Y (N,yC)
i0

(s) − yC(γ(N,yC)
i0

(s), s)| ds

+
∫ t0∧τ

(N)
i0,∧,k

t0∧τ
(N)
i0,∧,k−1

CW

N

∑
j �=i0

1K(N)
j (t0∧τ

(N)
i,k−1,s)c ds

)
]

� CW

N

N∑
j=1

E[
∏

α; iα �=i0

1
(K(N)

iα
(0,tα))c

∞∑
k=1

1K(N)
i0

(0,t0∧τ
(N)
i0,∧,k−1)

×
∫ t0∧τ

(N)
i0,∧,k

t0∧τ
(N)
i0,∧,k−1

1K(N)
j (t0∧τ

(N)
i0,k−1,s−)c ds ]

+ CW E[
∏

α; iα �=i0

1
(K(N)

iα
(0,tα))c

∞∑
k=1

1K(N)
i0

(0,t0∧τ
(N)
i0,∧,k−1)

×
∫ t0∧τ

(N)
i0,∧,k

t0∧τ
(N)
i0,∧,k−1

|Y (N,yC)
i0

(s) − yC(γ(N,yC)
i0

(s), s)| ds ].

(121)

Using 1K(N)
i0

(0,t0∧τ
(N)
i0,k−1)

� 1 and 1K(N)
j (t0∧τ

(N)
i0,k−1,s−)c � 1K(N)

j (0,s−)c , we see that for i, j =

1, 2, . . . ,N ,

∑
k�1

1K(N)
i (0,t∧τ

(N)
i,k−1)

∫ t∧τ
(N)
i,k

t∧τ
(N)
i,k−1

1K(N)
j (t∧τ

(N)
i,k−1,s−)c ds �

∫ t

0
1K(N)

j (0,s−)c ds.(122)
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Substituting (122) in the first term of the right hand side of (121), and bounding the characteristic
function on the right hand side by 1 for j ∈ {i1, . . . , iq} \ {i0}, and bounding the characteristic
function for i0 also by 1 in the second term of the right hand side of (121), we have

X(N)
q (t1, . . . , tq)

� CW T (q − 1)
N

q∑
i0=1

X
(N)
q−1(t1, . . . , ti0 , . . . , tq)

+ CW

q∑
i0=1

∫ ti0

0
X(N)

q (t1, . . . , s, . . . , tq) ds

+ CW max
{i1,...,iq}⊂{1,...,N}

∫ ti0

0

E[
∏

iα �=i0

1Kiα(0,tα)c |Y (N,yC)
ii0

(s) − yC((γ(N,yC)
ii0

(s), s)| ] ds.

(123)

Here, X
(N)
q−1(t1, . . . ,  ti0, . . . , tq) is the function in (118) with q replaced by q − 1 and with q − 1

variables obtained by excluding ti0 from t1, . . . , tq, and the variables for X(N)
q (t1, . . . , s, . . . , tq) is

t1, . . . , tq with ti0 replaced by s. Applying Hölder’s inequality in the form

E[ |X Y | ] � E[ |X|2p/(2p−1) ]1−(2p)−1

E[ |Y |2p ]1/(2p)

to the last term in the right hand side of (123), and using (42) and (56), we have

X(N)
q (t1, . . . , tq)

� CW T (q − 1)
N

q∑
i0=1

X
(N)
q−1(t1, . . . , ti0 , . . . , tq)

+ CW

q∑
i0=1

∫ ti0

0
X(N)

q (t1, . . . , s, . . . , tq) ds

+
CW TC

N δ

q∑
i0=1

(X(N)
q−1(t1, . . . , ti0 , . . . , tq))(2p−1)/(2p),

q = 1, 2, . . . ,

X
(N)
0 = 1.

Applying Theorem 13, with aq = CW TCN−δ, bq = CW T (q − 1)N−1, cq = CW , d = 1 − (2p)−1, we
have

X(N)
q (t1, . . . , tq) � gqe

q2CW T , ti ∈ [0, T ], i = 1, . . . , q, q ∈ N;
g0 = 1, gq = qCW T (CN−δgd

q−1 + (q − 1)N−1gq−1), q ∈ N.
(124)

For large N we have gq−1 < 1, hence with d < 1, we further have gd
q−1 > gq−1, and also with

0 < δ < 1 for large N we have N−δ > (q − 1)N−1, so that

gq � qCW Tgd
q−1N

−δ(C + 1), q ∈ N.

By induction in q,

gq � q!(CW T ∨ 1)q(C + 1)q
1

N2pδ(1−(1−(2p)−1)q)
, q ∈ N.
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Since 1 − (1 − 1
2p

)q is decreasing in q, we therefore have

X(N)
q (t1, . . . , tq) � q!(CW T ∨ 1)q(C + 1)qeq2CW T 1

N2pδ(1−(1−(2p)−1)2p)
,

q = 1, 2, . . . , p.
(125)

Choose δ′ to be any positive constant satisfying

0 < δ′ < (1 − 1
e
)δ.

Since lim
p→∞(1 − 1

2p
)2p = e−1 < 1, there exists an integer p0 >

1
2δ′

such that

δ′ < (1 − (1 − 1
2p

)2p)δ, p = p0, p0 + 1, . . . .

With (125) we arrive at

X(N)
q (t1, . . . , tq) � q!(CW T ∨ 1)q(C + 1)qeq2CW T 1

N2pδ′ , q = 1, 2, . . . , 2p,

for p = p0, p0 + 1, . . .. Since CN q � N q

q!
� N2p

q!
, this proves (119).

This completes a proof of Theorem 15, and therefore, of Theorem 14.

5.2 Proof of Theorem 2.

Let y ∈ [0, 1] and let h : W → R be a bounded continuous function with Ch > 0 as in (51).
For the flow yC ∈ ΘT in Theorem 1, the definition of ΘT in (13) implies that for each t ∈ [0, T ],
Γt � γ �→ yC(γ, t) ∈ [0, 1] is surjective. Therefore there exists γt : [0, 1] → Γt such that

yC(γt(y), t) = y, y ∈ [0, 1].(126)

We then have, using (19), (54), (126), (8), (18), (51), (5), and (126) in turn,∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) −
∫

W
h(w)µt(dw × [y, 1])

∣∣∣∣
=

∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) − ϕyC
(h, γt(y), t)

∣∣∣∣
� sup

γ∈Γt

|ϕ(N)(h, γ, t) − ϕyC
(h, γ, t)|

+
∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) −
∫

W
h(w)µ(N)

t (dw × [Y (N)
C (γt(y), t), 1])

∣∣∣∣
� sup

γ∈Γt

|ϕ(N)(h, γ, t) − ϕyC
(h, γ, t)| + Ch|y − Y

(N)
C (γt(y), t)|

� sup
γ∈Γt

|ϕ(N)(h, γ, t) − ϕyC
(h, γ, t)| + Ch|yC(γt(y), t) − Y

(N)
C (γt(y), t)|

� sup
γ∈Γt

|ϕ(N)(h, γ, t) − ϕyC
(h, γ, t)| + Ch sup

γ∈Γt

|yC(γ, t) − Y
(N)
C (γ, t)|.

Theorem 14 and (101) then imply

E[ sup
t∈[0,T ]

∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) −
∫

W
h(w)µt(dw × [y, 1])

∣∣∣∣
2p

]

� (1 + 22p−1Ch)C
N2pδ′ +

22p−1Ch

N2p
, N ∈ N,

(127)
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where the constants in the right hand side is as in Theorem 14. Since 2pδ′ > 1, we see that

E[
∞∑

N=1

sup
t∈[0,T ]

∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) −
∫

W
h(w)µt(dw × [y, 1])

∣∣∣∣
2p

] < ∞,

hence, in particular, we have

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣
∫

W
h(w)µ(N)

t (dw × [y, 1]) −
∫

W
h(w)µt(dw × [y, 1])

∣∣∣∣ = 0,(128)

with probability 1, which proves (28).
Next we prove uniform almost sure convergence of Y

(N)
i to Yi for i = 1, 2, . . . , L. As an analogy

to (32) and (33), define

τi,0 = 0,
τi,k+1 = inf{t > τi,k | νi({(s, ξ) ∈ (τi,k, T ] × [0,∞) |

0 � ξ � wi(Yi(s−), s)}) > 0}, k ∈ Z+,
(129)

and

γi(t) =
{

(yi, 0), 0 � t < τi,1,
(0, τi,k), τi,k � t < τi,k+1, k = 1, 2, . . . .

(130)

Comparing (20) and (30), we have, with similar argument for (42),

Yi(t) = yC(γi(t), t), t ∈ [0, T ].(131)

Quantities corresponding to (103), (104), (105), and (113) are

w̆
(N)
i,∧ (t) = wi(Y

(N)
i (t−), t) ∧ wi(Yi(t−), t), t),

w̆
(N)
i,∨ (t) = wi(Y

(N)
i (t−), t) ∨ wi(Yi(t−), t), t),

K̃(N)
i (0, t) = {ω ∈ Ω | νi({(s, ξ) | w̆

(N)
i,∧ (s) < ξ � w̆

(N)
i,∨ (s), s ∈ (0, t] }) = 0},

σ̃
(N)
i = inf{t ∈ [0, T ] | K̃(N)

i (0, t)c}.
A proof now proceeds with argument similar to that in § 5.1.2. An argument similar to that

for (116) leads to a bound

K̃(N)
i (0, t)c

⊂ {ω ∈ Ω | νi({(s, ξ) | 0 � ξ − w̆
(N)
i,∧ (s) � CW |Y (N)

i (s) − Yi(s)|,
s ∈ (0, t] }) > 0}.

(132)

Since νi is a Poisson random measure, it holds with probability 1 that νi(A) < ∞ for a Borel set
A ⊂ [0, T ] × [0,∞) of finite area. Hence for almost all ω ∈ Ω there exists ε = ε(ω) > 0 such that

νi({(s, ξ) | 0 � ξ − w̆
(N)
i,∧ (s) � ε, s ∈ (0, t] }) = 0.(133)

On the other hand, applying the argument from (127) to (128), (101) implies

lim
N→∞

sup
(γ,t)∈∆T

|Y (N)
C (γ, t) − yC(γ, t)| = 0, a.s..(134)
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Therefore, for almost all ω ∈ Ω, there exists an integer N0 = N0(ω) such that for N � N0,

sup
(γ,t)∈∆T

|Y (N)
C (γ, t) − yC(γ, t)| � ε

CW
, N � N0 .(135)

Combining (133), (135), (110), (131), and (132),

K̃(N)
i (0, T )c = ∅, N � N0 .(136)

Next, (110) and (131) imply

|Y (N)
i (t) − Yi(t)|

� |Y (N)
C (γ(N)

i (t), t) − yC(γ(N)
i (t), t)| + |yC(γ(N)

i (t), t) − yC(γi(t), t)|
� sup

γ∈Γt

|Y (N)
C (γ, t) − yC(γ, t)| + |yC(γ(N)

i (t), t) − yC(γi(t), t)|.

Comparing (109) and (130) we further have

|Y (N)
i (t) − Yi(t)|

� sup
γ∈Γt

|Y (N)
C (γ, t) − yC(γ, t)|

+ |yC((y(N)
i , 0), t) − yC((yi, 0), t)|1t<τi,1 +1K̃(N)

i (0,t)c
.

(137)

Substituting (136) in (137),

|Y (N)
i (t) − Yi(t)|

� sup
γ∈Γt

|Y (N)
C (γ, t) − yC(γ, t)| + |yC((y(N)

i , 0), t) − yC((yi, 0), t)|, N � N0 .(138)

Since yC ∈ ΘT , lim
N→∞

y
(N)
i = yi implies

lim
N→∞

sup
t∈[0,T ]

|yC((y(N)
i , 0), t) − yC((yi, 0), t)| = 0, a.s..(139)

Combining (134), (138), (139) we have

lim
N→∞

sup
t∈[0,T ]

|Y (N)
i (t) − Yi(t)| = 0, a.s..

Therefore the almost sure uniform convergence of tagged particle system holds, which completes a
proof of Theorem 2.

A Point process with last-arrival-time dependent intensity.

We will summarize the definition and basic formulas of the point processes with last-arrival-time
dependent intensities. See [10, §3] and [11, §1.2] for a proof.

In accordance with [10, 11], we will denote the point process with last-arrival-time dependent
intensity by N = N(t), while we wrote ν̃ in the main body of the present paper to keep the symbol
N for the particle number.
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Let N = N(t), t � 0, be a non-decreasing, right-continuous, non-negative integer valued stochas-
tic process on a measurable space with N(0) = 0, and for each non-negative integer k define its
k-th arrival time τk by

τk = inf{t � 0 | N(t) � k}, k = 1, 2, . . . , and τ0 = 0.(140)

The arrival times τk are non-decreasing in k, because N is non-decreasing, and since N is also
right-continuous, the arrival times are stopping times; if we denote the associated filtration by
Ft = σ[N(s), s � t], then {τk � t} ∈ Ft, t � 0.

Let ω be a non-negative valued bounded continuous function of (s, t) for 0 � s � t, and for
k = 1, 2, . . . assume that

P[ t < τk | Fτk−1
] = exp(−

∫ t

τk−1

ω(τk−1, u) du) on t � τk−1 .(141)

In particular, (141) with k = 1 implies

P[ N(t) = 0 ] = P[ τ1 > t ] = exp(−
∫ t

0
ω(0, u) du), t � 0.(142)

If ω is independent of the first variable, then (141) implies that N is the (inhomogeneous)
Poisson process with intensity function ω. We are considering a generalization of the Poisson
process such that the intensity function depends on the latest arrival time.

A construction of the point process with last-arrival-time dependent intensity goes as follows.
Let ω : [0,∞)2 → [0,∞) be a non-negative valued bounded continuous function of (s, t) for
0 � s � t, for which we aim to construct a process satisfying (141).

Let ν be a Poisson random measure on [0,∞)2, with unit constant intensity

E[ ν([a, b] × [c, d]) ] = (b − a)(d − c) b > a > 0, d > c > 0, k ∈ N.(143)

Define a sequence of hitting times τk, k ∈ Z+, inductively by

τ0 = 0, and
τk = inf{t � τk−1 | ν({(ξ, u) ∈ [0,∞)2 |

0 � ξ � ω(τk−1, u), τk−1 < u � t}) > 0 },
k = 1, 2, . . . .

(144)

Note that the definition is not equivalent to the wrong formula such as τk = inf{t � 0 |
ν({(ξ, u) ∈ [0,∞)2 | 0 � ξ � ω(τk−1, u), 0 < u � t}) � k }. We are recursively adding 1 new arrival
after the last arrival using the renewed intensity ω(τk−1, ·) in (144).

τk in (141) is defined by (144), and the process N(t) is defined by the reciprocal relation to
(140):

N(t) = max{k ∈ Z+ | τk � t}, t � 0.(145)

Since N(t) and τk are samplewise non-decreasing in t and k, respectively, (145) and (140) are
equivalent. Also, (141) follows from (144).

{τk � t} is in

Ft := σ[ν(A); A ∈ B([0,∞)2), A ⊂ [0,∞) × [0, t], k ∈ N],(146)

and consequently N is adapted to {Ft}.
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In coupling the stochastic ranking process with the flow driven stochastic ranking process, we
will need a representation of N by the stochastic integration with respect to ν in (143) which is,

N(t) =
∫

s∈(0,t]

∫
ξ∈[0,∞)

1ξ∈[0,ω(τ∗(s−),s−)) ν(dξ ds), t � 0,(147)

where τ∗ : Ω × [0,∞) → [0,∞) is the last arrival time up to time t:

τ∗(t) = τN(t) = inf{s � 0 | N(t) = N(s)} ∈ [0, t],(148)

which satisfies a stochastic integration equation

τ∗(t) =
∫

s∈(0,t]

∫
ξ∈[0,∞)

(s − τ∗(s−)) 1ξ∈[0,ω(τ∗(s−),s−)) ν(dξ ds),(149)

from which (147) follows.
For t � t0 put

Ω(t0, t) =
∫ t

t0

ω(t0, u) du.(150)

We have explicit formula

P[ N(t) = N(s) ] =
∑
k�0

P[ τk � s, t < τk+1 ]

=
∑
k�0

∫
0=:uk<uk−1<uk−2<···<u1<u0�s

× e−
�k−1

i=0 Ω(ui+1,ui)−Ω(u0,t)

(k−1∏
i=0

ω(ui+1, ui) dui

)
,

(151)

and for ‖ω‖ = sup
0�s�t�T

|ω(s, t)|,

0 � − ∂

∂t
P[ N(t) = N(s) ] � ‖ω‖ (P[ N(t) = N(s) ] − P[ N(t) = N(0) ]) � ‖ω‖ ,

0 � ∂

∂s
P[ N(t) = N(s) ]

=
∑
k�0

∫
0=:uk<uk−1<···<u1<u0�s

w(u0, s)

× e−
�k−1

i=0 Ω(ui+1,ui)−Ω(u0,t) (
k−1∏
i=0

ω(ui+1, ui) dui)

� ‖ω‖P[ N(t) = N(s) ] � ‖ω‖ ,
0 � s < t.

(152)
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