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Abstract

We consider an infinite system of quasilinear first-order partial differential equations, gener-
alized to contain spacial integration, which describes an incompressible fluid mixture of infinite
components in a line segment whose motion is driven by unbounded and space-time dependent
evaporation rates. We prove unique existence of the solution to the initial-boundary value prob-
lem, with conservation-of-fluid condition at the boundary. The proof uses a map on the space of
collection of characteristics, and a representation based on a non-Markovian point process with
last-arrival-time dependent intensity.
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1 Introduction.

Consider an incompressible fluid mixture in a line segment, say [0, 1], which flow in order preserving
manner and in one direction, with y = 0 being the upper stream boundary, and no leaking occurs
at y = 1. Each fluid component, say α, evaporates with rate wα which may vary among different
components and may depend on time. Flow of the fluid is driven by filling the evaporated portion
of the fluid toward the down stream. To formulate a system of partial differential equations which
explains the dynamics of this fluid up to time T > 0, let Uα(y, t) be the total volume (length) of
fluid component α at time t in the interval [y, 1). Then we have

∂ Uα

∂t
(y, t) +

∑
β

wβ(t)Uβ(y, t)
∂ Uα

∂y
(y, t) = −wα(t)Uα(y, t), (y, t) ∈ [0, 1] × [0, T ].(1)

We will preserve the total volume of each component by supplying the evaporated portion from
upper stream boundary through the boundary condition

Uα(0, t) = rα and Uα(1, t) = 0, t � 0,(2)

∗This work is supported by JSPS KAKENHI Grant Number 26400146.

1



2

for non-negative constants rα satisfying
∑
α

rα = 1. The incompressibility condition is formulated

as ∑
α

Uα(y, t) = 1 − y, t � 0.(3)

The number of fluid components may be finite or infinite. (For the latter case we regard the
summations in α as series.) If the system is infinite, we should impose an additional condition

∑
α

rα sup
t

wα(t) < ∞,(4)

to keep the velocity of the flow finite, namely, to keep coefficient of the y-derivative term in (1)
well-defined at y = 0. With appropriate initial conditions, these define an initial/boundary value
problem of a one dimensional first order quasilinear partial differential equations.

In this paper we consider a generalization of (1) to allow for spacial dependence for the evapo-
ration rates wα, as well as time dependence. Such generalization seems practically natural, because
if the fluid container has spacial non-uniformity in temperature, the evaporation rates would also
have spacial dependence. Uα(y, t) is the volume of type α fluid component in the interval [y, 1),
and we need to consider its density to consider spacially varying evaporation rates, hence a natural
generalization of (1) is

∂ Uα

∂t
(y, t) −

∑
β

∫ 1

y
wβ(z, t)

∂ Uβ

∂z
(z, t) dz

∂ Uα

∂y
(y, t) =

∫ 1

y
wα(z, t)

∂ Uα

∂z
(z, t) dz,

α = 1, 2, . . . , (y, t) ∈ [0, 1] × [0, T ].
(5)

Note that the equation is now non-local and contains integration. If wα are independent of y, then,
with (2), (5) reduces to (1).

The equation of the form (1) is known to be solved by considering characteristic curves [2], a
curve y = yC(t) whose derivative is equal to the velocity of fluid;

d yC

dt
(t) =

∑
β

wβ(t)ϕβ(t)(6)

where ϕα(t) = Uα(yC(t), t). Then (1) implies an ordinary differential equation for ϕα(t), which can
be solved explicitly, and (6) then implies

yC(t) = 1 −
∑
β

Uβ(y0, 0) exp(−
∫ t

t0

wβ(u) du).(7)

A natural generalization of (6) for (5) is

d yC

dt
(t) = −

∑
β

∫ 1

yC(t)
wβ(z, t)

∂ Uβ

∂z
(z, t) dz.(8)

As we will see in the present paper, this is no longer solved in such simple form as (7). Introduction
of spacial dependence for wα complicates the solution when combined with the boundary condition
(2) which conserves component volumes. We will show later that yC is determined as a fixed point
to the map G defined by (71) and (72), a result which apparently deviates largely from (7). To be
specific, our proof in § 5 of Theorem 7 proves an expression yC = lim

n→∞ Gn(θ0) for the characteristic
curves, where θ0 is a constant flow.
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In the preceding work [9], the problem (5) for wα with spacial dependence was considered under
the condition

sup
α

sup
(y,t)

wα(y, t) < ∞, and sup
α

sup
(y,t)

∂ wα

∂y
(y, t) < ∞.

In view of (4) for {wα} with spacially independent case, a natural restriction for wα is expected to
be a milder one, ∑

α

rα sup
(y,t)

wα(y, t) < ∞, and sup
α

sup
(y,t)

∂ wα

∂y
(y, t) < ∞,(9)

allowing, in particular, fluid mixture with unbounded evaporation rates. The unique existence of
the solution was proved for the case of bounded evaporation rates in [9], but explicit formula such
as (72) were absent. A main interest in [9] is on the stochastic ranking process [5, 4, 3, 11, 10], and
a rather strong restriction on wα was posed to prove existence of the hydrodynamic limit of the
process with spacially dependent wα, and (5) appears as the equation which characterizes the limit
of the process. In the present paper we focus on (5) itself, and solve the equation under a natural
assumption (9). Besides mathematical naturalness of the assumption (9), removal of boundedness
condition on {wα} has practical meaning also on an application of stochastic ranking process to an
analysis on a behavior of web ranking data for on-line retail businesses. See [8, 6, 7], in addition
to the references above for details on practical applications to web ranking.

As we will show in this paper, the solution Uα turns out to have a concise expression using the
stochastic processes Nθ,w,z which we introduce in § 3,

Uα(y, t) =
∫

z∈[y0,1)
P[ NyC ,wα,z(t) = NyC ,wα,z(t0) ]µ0,α(dz),(10)

where µ0,α denotes initial spacial distribution of the fluid component α, and (y0, t0) is a ini-
tial/boundary point such that the characteristic curve starting from the point satisfies y = yC(t).
(See (82) with (28).) The map G of (71) and (72) also has a corresponding expression (70). The
processes Nθ,w,z may be regarded as generalizations of the Poisson process, but, in contrast to the
Poisson process, lacks independent increment properties, resulting in the complexity of the solu-
tion. In the case of spacially independent evaporation rates, this underlying process reduces to the
Poisson process, whose independent increment property implies simple explicit formula such as (7).

We mentioned earlier that the characteristic curve, which is the key quantity for a solution to
a one dimensional first order quasilinear partial differential equation, will no longer be obtained by
ordinary differential equation for the spacially dependent {wα}, and that it is determined as the
fixed point to a map. The map is on the collection of the characteristic curves parametrized by its
intersection point with the initial/boundary points, the totality of which we introduce as flow in
§ 4.

These notions were absent in the preceding work [9], and it is to clarify such mathematical
structure of the solution that mainly motivated the present paper.

The plan of the paper is as follows. In § 2 we give the precise statement of our result, where
we generalize (5) to allow also for uncountable number of fluid components, by generalizing the
unknown functions to measure valued function. In § 3 we introduce the underlying stochastic
process and its elementary properties, with which we give an expression of the solution in § 4 (see
(82)), assuming existence of a fixed point to a certain map (Theorem 6). The existence of the fixed
point is proved in § 5, which completes the existence proof of the solution. A uniqueness proof of
the solution is given in § 6. As a remark concerning the condition in (9) on the spacial derivatives
of wα, we apply Schauder’s fixed point theorem in § A to the map defined by (71) and (72), with
the condition on derivative relaxed to a global bound on oscillation of wα .
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2 Main Result.

Throughout this paper we fix T > 0, W ⊂ C1([0, 1]× [0, T ]; [0,∞)) a set of non-negative valued C1

functions on [0, 1] × [0, T ], and a Borel probability measure λ supported on the Borel measurable
space (W,B(W )). B(W ) is the σ-algebra generated by open sets with the topology from the space
of continuous functions C0([0, 1] × [0, T ]; [0,∞)) ⊃ C1([0, 1] × [0, T ]; [0,∞)) with the metric given
by the supremum norm

‖w‖T = sup
(y,t)∈[0,1]×[0,T ]

|w(y, t)|.(11)

We assume that
MW :=

∫
W

‖w‖T λ(dw) < ∞(12)

and

CW := sup
w∈W

∥∥∥∥∂ w

∂y

∥∥∥∥
T

< ∞(13)

hold.
Denote the sets of ‘initial (t = 0) points’ in the space-time [0, 1]× [0, T ], the set of ‘upper stream

boundary (y = 0) points’, and their union, the set of initial/boundary points, respectively by

Γb = {0} × [0, T ] = {(0, s) | 0 � s � T},
Γi = [0, 1] × {0} = {(z, 0) | 0 � z � 1},
Γ = Γb ∪ Γi .

(14)

For t ∈ [0, T ], denote the set of initial/boundary points up to time t by

Γt = {(z, s) ∈ Γ | t0 � t} = Γi ∪ {(0, t0) ∈ Γb | 0 � t0 � t},(15)

and the set of admissible pairs of the initial/boundary point γ and time t by

∆T := {(γ, t) ∈ ΓT × [0, T ] | γ ∈ Γt}.(16)

To state the initial condition, let µ0 = µ0(dw × dz) be a Borel probability measure on the
measurable space (W × [0, 1],B(W × [0, 1])) of the product space of W and [0, 1]. We assume that
µ0 is absolutely continuous with respect to the product measure λ × dz, where dz denotes the
standard Lebesgue measure on R. Denote the density function by σ, namely,

µ0(dw × dz) = σ(w, z)λ(dw) dz, (w, z) ∈ W × [0, 1].(17)

We assume µ0(W × dz) = dz and µ0(dw × [0, 1)) = λ, or equivalently, in terms of σ, we assume
∫

W
σ(w, y)λ(dw) = 1, y ∈ [0, 1],(18)

and ∫ 1

0
σ(w, z) dz = 1, w ∈ W.(19)

We now state the main result we prove in this paper. For notational convenience, in the following,
and throughout the paper, we use a notation such as µ(dw) = ν(dw) to indicate the equality of
measures, µ(B) = ν(B), for all B ∈ B(W ).
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Theorem 1 There exists a unique pair of functions yC and µt(dw × dz), where yC is a function
of (γ, t) ∈ ∆T taking values in [0, 1], and µt(dw× dz) is a function of t ∈ [0, T ] taking values in the
probability measures on W × [0, 1], such that the following hold.

(i) yC((y0, 0), t) is non-decreasing in y0, yC((0, t0), t) is non-increasing in t0, and yC(γ, t) is
non-decreasing in t.

(ii) yC(γ, t) and
∂ yC

∂t
(γ, t) are continuous, and for each t ∈ [0, T ], yC(·, t) : Γt → [0, 1] is

surjective.

(iii) For all bounded measurable h : W → R,
∫

W
h(w)µt(dw × [y, 1)) is Lipschitz continuous in

(y, t) ∈ [0, 1] × [0, T ], with Lipschitz constant uniform in h satisfying

sup
w∈W

|h(w)| � 1.(20)

More precisely,
∣∣∣∣
∫

W
h(w)µt′(dw × [y′, 1))) −

∫
W

h(w)µt(dw × [y, 1))
∣∣∣∣ � |y′ − y| + MW e2CW T |t′ − t|,(21)

for h satisfying (20).

(iv) The following equation of motion and initial and boundary conditions hold.

yC((y0, t0), t0) = y0 , (y0, t0) ∈ Γ, and µ0(dw × dy) as in (17),(22)

µt(dw × [0, 1)) = λ(dw), t ∈ [0, T ],(23)

µt(W × [y, 1)) = 1 − y, (y, t) ∈ [0, 1] × [0, T ],(24)

µt(dw × [yC((y0, t0), t), 1))

= µt0(dw × [y0, 1)) −
∫ t

t0

∫
z∈[yC((y0,t0),s),1)

w(z, s)µs(dw × dz) ds,

((y0, t0), t) ∈ ∆T .

(25)

�

Note that a substitution y = yC(γ, t) in (24) implies

yC(γ, t) = 1 − µt(W × [yC(γ, t), 1)),(26)

with which (25) and (24) imply

yC(γ, t) = y0 +
∫ t

t0

∫
W×[yC(γ,s),1)

w(z, s)µs(dw × dz) ds.(27)

If W is a countable set W = {w1, w2, . . .}, denote the distribution functions by

Uα(y, t) = µt({wα} × [y, 1)).(28)

Assume further that the functions Uα : [0, 1] × [0, T ] → [0,∞) are in C1. Differentiating (27)
by t we reproduce (8) in § 1. Differentiating (25) by t, substituting (8), and then changing the
notation from yC(γ, t) to y, we can eliminate the dependence on initial/boundary parameter γ, and
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we reproduce (5) in § 1. With λ({wα}) = rα, (23) and (24) respectively correspond to (2) and (3),
and the conditions (12) and (13) imply (9). Thus Theorem 1 contains a solution to the problem
introduced in § 1.

In Theorem 1 we claim differentiability for yC(γ, t) in t, while we formulated (25) so that
differentiability assumptions on Uα(y, t) or µt(dw × [y, 1)) are absent. In fact, at (y, t) with y =
yC((0,0), t), where the characteristic curves starting at initial points γ ∈ Γi and those starting at
boundary points γ ∈ Γb meet, the differentiability with respect to variables which cross the curve
are lost in general. Loss of regularity across the characteristic curves is common for the quasilinear
partial differential equations [2]. In terms of [2, §3.4], we may therefore say that Theorem 1
claims global existence of the Lipschitz solution (broad solution which is Lipschitz continuous) to
the system of quasilinear partial differential equations (5), where we extended the definition of
Lipschitz solution in [2, §3.4], to include the non-local (integration) terms, and also generalized the
notion of domain of determinancy defined in [2, §3.4], which in the present case corresponds to
{(y, t) ∈ [0, 1] × [0,∞) | y � yC((0,0), t)}, to the boundary condition dependent domain {(y, t) ∈
[0, 1] × [0,∞) | y < yC((0,0), t)}. By formulating Theorem 1 in terms of probability measures on
W × [0, 1] we also included uncountably many components parametrized by the evaporation rates
w, which are componentwise bounded but may be unbounded as a total fluid.

3 Point process with last-arrival-time dependent intensity.

Let N = N(t), t � 0, be a non-decreasing, right-continuous, non-negative integer valued stochastic
process on a measurable space with N(0) = 0, and for each non-negative integer k define its k-th
arrival time τk by

τk = inf{t � 0 | N(t) � k}, k = 1, 2, . . . , and τ0 = 0.(29)

The arrival times τk are non-decreasing in k, because N is non-decreasing, and since N is also
right-continuous, the arrival times are stopping times; if we denote the associated filtration by
Ft = σ[N(s), s � t], then {τk � t} ∈ Ft, t � 0.

Let ω be a non-negative valued bounded continuous function of (s, t) for 0 � s � t, and for
k = 1, 2, . . . assume that

P[ t < τk | Fτk−1
] = exp(−

∫ t

τk−1

ω(τk−1, u) du) on t � τk−1 .(30)

In particular, (30) with k = 1 implies

P[ N(t) = 0 ] = P[ τ1 > t ] = exp(−
∫ t

0
ω(0, u) du), t � 0.(31)

Note that the function ω has different dependence on the variables from the evaporation rate
function w in the other sections of this paper. (We will relate ω to w by (51) in § 4, namely, we will
introduce an intensity function as a composite function of the evaporation rate function and a flow.)
If ω is independent of the first variable, then (30) implies that N is the (inhomogeneous) Poisson
process with intensity function ω. We are considering a generalization of the Poisson process such
that the intensity function depends on the latest arrival time.

The remainder of this section is devoted to basic formulas to be used in this paper. For a
continuously differentiable function f vanishing at ∞, (30), with integration by parts and the
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Fubini’s theorem, implies∫ ∞

τk−1

f(t)ω(τk−1, t) exp(−
∫ t

τk−1

ω(τk−1, s) ds) dt

=
∫ ∞

τk−1

f ′(t) exp(−
∫ t

τk−1

ω(τk−1, s) ds) dt + f(τk−1)

=
∫ ∞

τk−1

f ′(t)P[ t < τk | Fτk−1
] dt + f(τk−1)

= E[
∫ ∞

τk−1

f ′(t)1t<τk
dt | Fτk−1

] + f(τk−1)

= E[
∫ τk

τk−1

f ′(t) dt | Fτk−1
] + f(τk−1)

= E[ f(τk) | Fτk−1
], k = 1, 2, . . . .

(32)

Approximating by a series of smooth functions, (32) holds for any f ∈ L0([0,∞)), where L0([0,∞))
is the space of bounded measurable functions f : [0,∞) → R vanishing at infinity, equipped with
the supremum norm.

For t � t0 put

Ω(t0, t) =
∫ t

t0

ω(t0, u) du,(33)

and define a linear map Aω : L0([0,∞)) → L0([0,∞)) by

(Aωf)(t) =
∫ ∞

t
f(u)ω(t, u) e−Ω(t,u) du.(34)

Then (32) implies
E[ f(τk) | Fτk−1

] = (Aωf)(τk−1), f ∈ L0([0,∞)).(35)

By induction and τ0 = 0 we have

E[ f(τk) ] = E[ E[ · · ·E[ E[ f(τk) | Fτk−1
] | Fτk−2

] · · · | Fτ1 ] ]
= (Ak

ω f)(0)

=
∫

0�u1�u2�···�uk<∞
f(uk)

k∏
i=1

ω(ui−1, ui) e−Ω(ui−1,ui) dui ,

(36)

where we put u0 = 0 to simplify notations.
For example, by choosing f(u) = 1u�t, (35) implies

P[ τk � t | Fτk−1
] = (1 − e−Ω(τk−1,t)) 1τk−1�t .(37)

Then (37) and (36) with f(u) = e−Ω(u,t) 1u�t imply

P[ N(t) = k ] = P[ τk � t < τk+1 ] = E[ 1τk�t (1 − P[ τk+1 � t | Fτk
]) ]

= E[ f(τk) ] = (Ak
ω f)(0), k ∈ Z+, t > 0.

(38)

Hence, as in the last line of (36),

P[ N(t) = k ] = (Ak
ωf)(0)

=

⎧⎪⎨
⎪⎩

∫
0�u1�u2�···�uk�t

e−Ω(uk ,t)
k∏

i=1

ω(ui−1, ui) e−Ω(ui−1,ui) dui , k = 1, 2, . . . ,

e−Ω(0,t), k = 0.

(39)
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In particular, P[ N(t) � 0 ] = 1 implies a sum rule

e−Ω(0,t) +
∞∑

k=1

∫
0�u1�u2�···�uk�t

e−Ω(uk ,t)
k∏

i=1

ω(ui−1, ui) e−Ω(ui−1,ui) dui = 1,

t > 0,

(40)

where u0 = 0, as in (36).
Similarly, given s and t satisfying 0 � s < t, the probability that there is no arrival in the

interval (s, t] is

P[ N(t) = N(s) ] =
∞∑

k=0

P[ N(t) = N(s) = k ] =
∞∑

k=0

P[ τk � s, t < τk+1 ]

=
∞∑

k=0

E[ 1τk�s (1 − P[ τk+1 � t | Fτk
]) ]

=
∞∑

k=0

E[ 1τk�s e−Ω(τk ,t) ].

(41)

With f(u) = 1u�s e−Ω(u,t) in (36), we also have an explicit formula

P[ N(t) = N(s) = k ] = E[ 1τk�s e−Ω(τk ,t) ] = (Ak
ω f)(0)

=

⎧⎪⎨
⎪⎩

e−Ω(0,t), k = 0,∫
0�u1�u2�···�uk�s

e−Ω(uk ,t)
k∏

i=1

ω(ui−1, ui) e−Ω(ui−1,ui) dui , k = 1, 2, . . . ,

(42)

for t � s > 0, where u0 = 0, as in (36). The following property relates the s and t dependencies of
the quantity in (41). Note that the explicit formula (41) implies that this quantity is C1 in s and t.

Proposition 2 For k = 1, 2, . . .,
∂

∂t
P[ N(t) = N(s) = k ] = −

∫ s

0
ω(u, t)

∂

∂u
P[ N(t) = N(u) = k ] du,

0 � s < t.
(43)

�

Proof. First we prove

E[ f(τk) g(τk) 1τk�s ] =
∫ s

0
f(u)Q′(u) du(44)

for locally bounded and measurable f and g such that

Q(s) := E[ g(τk) 1τk�s ](45)

is absolutely continuous with respect to the Lebesgue measure (so that the derivative Q′ almost
surely exists). Approximating by a series of smooth functions, it suffices to prove (44) for f ∈ C1.
By Fubini’s theorem and partial integration, and noting that τk > 0 for k > 0 implies Q(0) = 0,

E[ f(τk) g(τk) 1τk�s ] = E[
(
−

∫ s

τk

f ′(u) du + f(s)
)

g(τk) 1τk�s ]

= f(s)Q(s) −
∫ s

0
f ′(u)E[ 1τk�u g(τk) ] du

= f(s)Q(s) −
∫ s

0
f ′(u)Q(u) du

=
∫ s

0
f(u)Q′(u) du.
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Thus (44) is proved.
Now for a positive integer k, let f(u) = ω(u, t) and g(u) = e−Ω(u,t) in (44). Note that for this

choice (42) implies
Q(s) = E[ e−Ω(τk ,t) 1τk�s ] = P[ N(t) = N(s) = k ].

Then (44) implies

∂

∂t
P[ N(t) = N(s) = k ] = −E[ ω(τk, t) e−Ω(τk ,t) 1τk�s ]

= −E[ f(τk) g(τk) 1τk�s ] = −
∫ s

0
f(u)Q′(u) du

= −
∫ s

0
ω(u, t)

∂

∂u
E[ N(t) = N(u) = k ] du,

which proves (43). �

Note that, for example, the explicit formula in (42) depends on the intensity function ω at times
before s, which implies that the process N is not of independent increment, hence, in particular, is
not a Poisson process. If, on the other hand, ω is independent of its first variable, put ω̃(t) = ω(s, t).

Then (33) implies Ω(t0, t) =
∫ t

t0

ω̃(s) ds, and (42) is simplified as

P[ N(t) = N(s) ] =
(

1 +
∑
k�1

∫
0�u1�u2�···�uk�s

k∏
i=1

ω̃(ui)
k∏

i=1

dui

)
e−Ω(0,t)

=
(

1 +
∑
k�1

1
k!

Ω(0, s)k

)
e−Ω(0,t)

= eΩ(0,s) × e−Ω(0,t) = e−Ω(s,t),

(46)

where we used an elementary formula proved by induction in k,

∫
0�u1�u2�···�uk�s

k∏
i=1

f(ui)du1 du2 . . . duk =
1
k!

(∫ s

0
f(v)dv

)k

, s � 0, k = 1, 2, . . . ,(47)

valid for any integrable function f : R → R. The simple result (46) reproduces a formula for the
(inhomogeneous) Poisson process with independent increments. In the general case of processes we
consider in this paper, such simple relations to Poisson processes or Poisson distributions are lost
and the properties of the processes become complicated.

4 Flows and construction of solution.

The key quantities for the solution to the functional equations in Theorem 1 are the characteristic
curves yC and the associated measure ϕ(dw, γ, t) = µt(dw × [yC(γ, t), 1)). We will find yC as a
unique solution to a non-linear map on a space ΘT of flows, a non-decreasing function in time t
and in initial/boundary points γ ∈ Γ. To simplify the definition of ΘT we first define a total order
� on Γ by

s � t, z � y ⇔ (0, T ) � (0, t) � (0, s) � (0, 0) � (z, 0) � (y, 0) � (1, 0).(48)



10

We now define the set of flows ΘT on [0, 1] × [0, T ] by

ΘT := {θ : ∆T → [0, 1] | θ((y0, t0), t0) = y0, (y0, t0) ∈ ΓT , continuous,
surjective and non-increasing in γ for each t,
non-decreasing in t for each γ }.

(49)

For example,
θ((1,0), t) = 1, t ∈ [0, T ], θ ∈ ΘT .(50)

Let W , the set of evaporation rates, be as in Theorem 1, and let θ ∈ ΘT . For each w ∈ W
and z ∈ [0, 1) define ω = ωθ,w,z, a non-negative valued continuous function of (s, t) satisfying
0 � s � t � T , by

ωθ,w,z(s, t) =
{

w(θ((z, 0), t), t), if s = 0,
w(θ((0, s), t), t), if s > 0.

(51)

Note that ωθ,w,z is independent of z if s > 0. Let {Nθ,w,z | z ∈ [0, 1), w ∈ W} be a set of processes,
with each Nθ,w,z being a point process N introduced in § 3 with the intensity function in (30)
determined by ω = ωθ,w,z. The quantity in (33) for the choice (51) is

Ωθ,w,z(0, t) =
∫ t

0
w(θ((z, 0), u), u) du,

Ωθ,w(s, t) =
∫ t

s
w(θ((0, s), u), u) du, 0 < s � t.

(52)

Let µ0 be as in Theorem 1, and define a function ϕθ(dw, γ, t) on (γ, t) ∈ ∆T taking values in
the measures on W , by

ϕθ(dw, γ, t) =
∫

z∈[y0,1)
P[ Nθ,w,z(t) = Nθ,w,z(t0) ] µ0(dw × dz),

γ = (y0, t0) ∈ Γ, (γ, t) ∈ ∆T .
(53)

The explicit form for (53) is simple for γ = (y0, 0) ∈ Γi, because Nθ,w,z(0) = 0, and (42) with k = 0
imply

ϕθ(dw, (y0, 0), t) =
∫

z∈[y0,1)
e−Ωθ,w,z(0,t) µ0(dw × dz).(54)

For ϕθ in (53) define
∂ ϕθ

∂γ
, a measure valued function on ∆T , by

∂ ϕθ

∂γ
(dw, γ, t) =

⎧⎪⎨
⎪⎩

−∂ ϕθ

∂z
(dw, (z, 0), t), if γ = (z, 0) ∈ Γi ,

∂ ϕθ

∂u
(dw, (0, u), t), if γ = (0, u) ∈ Γb .

(55)

We keep non-negativity of the defined measure in determining the sign. Explicit calculation of the
derivative at γ ∈ Γi is straightforward from (54) and (17). The derivative at γ = (0, u) ∈ Γb is also



11

calculated explicitly using (42) and (53), which is

∂ ϕθ

∂u
(dw, (0, u), t)

=
∫

z∈[0,1)

(
w(θ((z, 0), u) e−Ωθ,w,z (0,u)

+
∑
k�2

∫
0<u1�u2�···�uk−1�u

w(θ((z, 0), u1) e−Ωθ,w,z(0,u1) du1

k−1∏
i=2

(
w(θ((0, ui−1), ui) e−Ωθ,w(ui−1,ui) dui

)

w(θ((0, uk−1), u) e−Ωθ,w(uk−1,u)

)
e−Ωθ,w(u,t) µ0(dw × dz),

(56)

where we also used the notations (51) and (52) to make the z and u dependence explicit. Note
that w ∈ W are non-negative functions, hence e−Ωθ,w(u,t) � 1. This and the sum rule (40) (with
the replacements t = u and k = k′ − 1), with (12), (17), and (19) imply

∂ ϕθ

∂u
(W, (0, u), t) �

∫
B×[0,1)

‖w‖T µ0(dw × dz) =
∫

B
‖w‖T λ(dw) = MW < ∞,

hence,
∂ ϕθ

∂u
is well-defined.

For f : ΓT → R and a Borel subset A ⊂ ΓT , define
∫

A
f(γ) dγ, a line integral on ΓT , by

∫
A

f(γ) dγ =
∫

Ai

f(z, 0)dz +
∫

Ab

f(0, u) du,(57)

where, Ai = {z ∈ [0, 1) | (z, 0) ∈ A} and Ab = {u ∈ [0, T ] | (0, u) ∈ A}, and the integration in the
right hand side of (57) are the standard one dimensional integrations.

Proposition 3 It holds that

0 �
∫

γ′∈Γt

∫
W

‖w‖T

∂ ϕθ

∂γ
(dw, γ′, t) dγ′ � MW e2CW t,(58)

for all t ∈ [0, T ]. �

Remark. Note the extra ‖w‖T in the integrand of (58). We are allowing W to contain unbounded
functions w, so the finiteness of (58) is harder than that of (56). We use the condition (13) as well
as (12) to prove (58).

Proposition 3 implies, in particular, that the integration (63) introduced later, is uniformly
bounded in (γ, t) ∈ ∆T and B ∈ B(W ). �

Proof of Proposition 3. By the definitions (55) and (57),
∫

γ′∈Γt

∫
W

‖w‖T

∂ ϕθ

∂γ
(dw, γ′, t) dγ′

= −
∫ 1

0

∫
W

‖w‖T

∂ ϕθ

∂z
(dw, (z, 0), t) dz +

∫ t

0

∫
W

‖w‖T

∂ ϕθ

∂u
(dw, (0, u), t) du.

(59)
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The first term on the right hand side is explicitly calculated using (54) and (17). Using also
e−Ωθ,w,z(0,t) � 1, (19), and (12), we have an estimate

0 � −
∫ 1

0

∫
W

‖w‖T

∂ ϕθ

∂z
(dw, (z, 0), t) dz =

∫
W×[0,1)

‖w‖T e−Ωθ,w,z(0,t) µ0(dw × dz)

� MW < ∞.

(60)

Next, for t � s � 0 and w ∈ W , put

Ω̃w(s, t) =
∫ t

s
w(1, u) du.(61)

Then the condition (13) and the fact that θ takes values in [0, 1] imply

|w(θ(γ, t), t) − w(1, t)| � CW ,

|Ωθ,w(s, t) − Ω̃w(s, t)| � CW (t − s), and |Ωθ,w,z(0, t) − Ω̃w(0, t)| � CW t,
(γ, t) ∈ ∆T , 0 < s � t, w ∈ W.

(62)

Using (62) and (61) in (56), and then using (17) and (19), we have an estimate
∫ t

0

∫
W

‖w‖T

∂ ϕθ

∂u
(dw, (0, u), t) du

�
∫

W
‖w‖T e−Ω̃w(0,t)+CW t

∫ t

0
(w(1, u) + CW )

(
1

+
∑
k�1

∫
0<u1�···�uk�u

k∏
i=1

((w(1, ui) + CW ) dui)
)

duλ(dw).

The estimate is now reduced to that for the Poisson processes, and (47) implies
∫ t

0

∫
W

‖w‖T

∂ ϕθ

∂u
(dw, (0, u), t) du

�
∫

W
‖w‖T e−Ω̃w(0,t)+CW t

∫ t

0
eΩ̃w(0,u)+CW u(w(1, u) + CW u) duλ(dw)

=
∫

W
‖w‖T e−Ω̃w(0,t)+CW t

[
eΩ̃w(0,u)+CW u

]u=t

u=0

λ(dw)

� e2CW t

∫
W

‖w‖T λ(dw) � MW e2CW t.

This proves (58). �

Proposition 4 It holds that

∂ ϕθ

∂t
(B, γ, t) = −

∫
γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕθ

∂γ
(dw, γ′, t) dγ′,

(γ, t) ∈ ∆T , B ∈ B(W ),
(63)

where γ � γ′ is defined in (48). �
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Remark. If W consists of functions with no spatial dependence, namely, if w(y, t) = w(1, t), then the
factor w in the integrand of the right hand side of (63) is constant for γ′ integration, and we have
integration after differentiation, so that the right hand side is simplified as −w(1, t)ϕθ(B, γ, t), and
the equation is solved easily, as remarked below (6) in § 1. �

Proof of Proposition 4. Consider first the case γ = (y0, 0) ∈ Γi . The explicit form (54), together
with the definitions (55), (57), and (17), implies

−
∫

γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕθ

∂γ
(dw, γ′, t) dγ′

= −
∫

z∈[y0,1)

∫
B

w(θ((z, 0), t), t) e−Ωθ,w,z (0,t) σ(w, z)λ(dw) dz

= −
∫

z∈[y0,1)

∫
B

w(θ((z, 0), t), t) e−Ωθ,w,z (0,t) µ0(dw × dz) =
∂ ϕθ

∂t
(B, (y0, 0), t),

which proves (63) for γ ∈ Γi .
To prove (63) for γ ∈ Γb , put, for k ∈ Z+,

ϕ
(k)
θ (dw, (y0, t0), t) =

∫
z∈[y0,1)

P[ Nθ,w,z(t) = Nθ,w,z(t0) = k ]µ0(dw × dz).(64)

Then (53) implies

ϕθ =
∞∑

k=0

ϕ
(k)
θ .(65)

We will prove, for γ = (0, t0) ∈ Γb

∂ ϕ
(k)
θ

∂t
(B, γ, t) = −

∫
γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕ

(k)
θ

∂γ
(dw, γ′, t) dγ′,

(γ, t) ∈ ∆T , B ∈ B(W ),
(66)

for all k ∈ Z+, where differentiation and integration with respect to γ are defined in accordance with
(55) and (57). Then (65) and (66) prove (63). The changes in the order of series and integration
and differentiation causes no problem, because all the terms and integrands are non-negative and
the results of summation and integration are bounded by Proposition 3.

Consider first the case k = 0. Then (42) implies

ϕ
(0)
θ (dw, (y0, t0), t) =

∫
z∈[y0,1)

e−Ωθ,w,z(0,t) µ0(dw × dz).(67)

Note that this is independent of t0. Hence (55) and (17) imply

∂ ϕ
(0)
θ

∂γ
(dw, γ′, t) =

{
e−Ωθ,w,z(0,t) σ(w, z)λ(dw), if γ′ = (z, 0) ∈ Γi ,
0, if γ′ = (0, u) ∈ Γb .

(68)

For the case γ = (0, t0) ∈ Γb ,

γ � γ′ ⇔ γ′ = (0, u), 0 � u � t0, or γ′ = (z, 0), 0 � z � 1.
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The contribution, however, to (57) from the integration along Γb vanishes because the integrand
(68) is 0 on Γb. Hence, (68), (57), (17), and (67) imply

∫
γ�γ′

∫
B

w(θ(γ′, t), t)
∂ ϕ

(0)
θ

∂γ
(dw, γ′, t) dγ′

=
∫

z∈[0,1)

∫
B

w(θ((z, 0), t), t) e−Ωθ,w,z (0,t) σ(w, z)λ(dw) dz

=
∫

B×[0,1)
w(θ((z, 0), t), t) e−Ωθ,w,z (0,t) µ0(dw × dz)

= −∂ ϕ
(0)
θ

∂t
(B, γ, t),

which proves (66) for k = 0 and γ ∈ Γb .
To consider the case k > 0 and γ = (0, t0) ∈ Γb, (64), Proposition 2, and (51) imply

∂ ϕ
(k)
θ

∂t
(B, (0, t0), t)

= −
∫

B×[0,1)

∫ t0

0
w(θ(0, u), t), t)

∂

∂u
P[ Nθ,w,z(t) = Nθ,w,z(u) = k ] duµ0(dw × dz)

= −
∫ t0

0

∫
w∈B

w(θ(0, u), t), t)
∂ ϕ

(k)
θ

∂u
(dw, (0, u), t) du, 0 < t0 < t.

The contribution to (57) from γ′ ∈ Γi vanishes for the case k > 0 because Nθ,w,z(0) = 0 and (64)
then imply

ϕ
(k)
θ (dw, γ, t) = 0, γ ∈ Γi , t � 0, k = 1, 2, . . . ,(69)

hence (66) is proved for this case. This completes a proof of (66), and (63) follows. �

Next put
G(θ)(γ, t) = 1 − ϕθ(W,γ, t)

= 1 −
∫

W×[y0,1)
P[ Nθ,w,z(t) = Nθ,w,z(t0) ] µ0(dw × dz)

= y0 +
∫

W×[0,1)
P[ Nθ,w,z(t) > Nθ,w,z(t0) ]µ0(dw × dz)

γ = (y0, t0) ∈ Γ, (γ, t) ∈ ∆T .

(70)

With (17) and (42), we have an explicit formula

G(θ)((y0, 0), t) = 1 −
∫

W×[y0,1)
e−Ωθ,w,z(0,t) σ(w, z)λ(dw) dz,

γ = (y0, 0) ∈ Γi ,
(71)

and
G(θ)((0, t0), t) = 1 −

∫
W×[0,1)

e−Ωθ,w,z(0,t) σ(w, z)λ(dw) dz

−
∫

W×[0,1)

∑
k�1

∫
0�u1�···�uk�t0

w(θ((z, 0), u1), u1) e−Ωθ,w,z(0,u1)

×
k∏

i=2

(
w(θ((0, ui−1), ui), ui) e−Ωθ,w(ui−1,ui)

)

× e−Ωθ,w(uk,t)
k∏

i=1

dui σ(w, z)λ(dw) dz,

γ = (0, t0) ∈ Γb ∩ Γt .

(72)
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Using these explicit formula with (18) and (40), we see from (49) that G(θ) ∈ ΘT . Namely, (70)
defines a map

G : ΘT → ΘT(73)

on the set of flows ΘT .

Proposition 5 If θ ∈ ΘT is a fixed point of G in (73), namely, if G(θ) = θ, then ϕθ defined by
(53) uniquely determines for each t ∈ [0, T ] a probability measure µθ,t on W × [0, 1] by the equation

ϕθ(dw, γ, t) = µθ,t(dw × [θ(γ, t), 1)), (γ, t) ∈ ∆T .(74)

Furthermore, we have a following formula for a change of integration variables:
∫

W×{γ′∈Γt|γ�γ′}
f(w, θ(γ′, t), t)

∂ ϕθ

∂γ
(dw, γ′, t) dγ′

=
∫

W×[θ(γ,t),1]
f(w, z, t)µθ,t(dw × dz),

(75)

for integrable function f : W × [0, 1] × [0, T ] → R. �

Remark. We are working with a generalization of characteristic curves, for which (γ, t) is a good
coordinate. On the other hand, equation of motions are usually stated in the space time coordinates
(y, t). This proposition relates the representations in these distinct coordinate systems. �

Proof of Proposition 5. The definition (49) of ΘT implies that θ(·, t) : Γt → [0, 1] is continuous,
surjective and non-decreasing. Hence to prove (74) we only need to prove consistency, namely,

θ(γ, t) = θ(γ′, t) ⇒ ϕθ(B, γ, t) = ϕθ(B, γ′, t), B ∈ B(W ).(76)

If (76) holds, then (74) determines the distribution function µθ,t(B × [y, 1)), y ∈ [0, 1], on [0, 1], so
that µθ,t(B × [a, b]) is determined, and eventually µθ,t is determined as a probability measure on
the product space W × [0, 1].

Assume that θ(γ, t) = θ(γ′, t) for γ = (y0, t0) ∈ Γt and γ′ = (y′0, t′0) ∈ Γt. Since (Γ,�) is a totally
ordered set, we may assume without loss of generality that γ � γ′. Then (48) implies t0 � t′0 � t
and y0 � y′0. Non-decreasing property of the point process Nθ,w,z(t) in t and monotonicity of
measures imply with the definition (53),

ϕθ(B, γ′, t) � ϕθ(B, γ, t), and ϕθ(Bc, γ′, t) � ϕθ(Bc, γ, t),(77)

for any B ∈ B(W ),
On the other hand, the assumption G(θ) = θ and (70) and θ(γ, t) = θ(γ′, t) imply

ϕθ(B, γ, t) + ϕθ(Bc, γ, t) = ϕθ(W,γ, t) = 1 − G(θ)(γ, t) = 1 − θ(γ, t)
= 1 − θ(γ′, t) = ϕθ(B, γ′, t) + ϕθ(Bc, γ′, t).

Hence
ϕθ(B, γ′, t) − ϕθ(B, γ, t) = −(ϕθ(Bc, γ′, t) − ϕθ(Bc, γ, t)).(78)

Combining (77) and (78), we see that (76) holds, which implies (74).
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Next to prove (75), we first prove
∫

γ�γ′

∂ ϕθ

∂γ
(B, γ′, t) dγ′ = µθ,t(B × [θ(γ, t), 1)), (γ, t) ∈ ∆T , B ∈ B(W ).(79)

In fact, note that (53) implies

ϕθ(B, (1, 0), t) = 0, B ∈ B(W ), t � 0.(80)

Then, if γ = (y0, 0) ∈ Γi , The explicit formula (42), with the definitions (53) (55) (57), implies

∫
γ�γ′

∂ ϕθ

∂γ
(B, γ′, t) dγ′ = −

∫ 1

y0

∂ ϕθ

∂z
(B, (z, 0), t) dz

= ϕ(B, (y0, 0), t),

where we used (80) in the last line. If γ = (0, t0) ∈ Γb , the explicit formula (42) similarly implies
∫

γ�γ′

∂ ϕθ

∂γ
(B, γ′, t) dγ′

= −
∫ 1

0

∂ ϕθ

∂z
(B, (z, 0), t) dz +

∫ t0

0

∂ ϕθ

∂u
(B, (0, u), t) du

= −(ϕθ(B, (1, 0), t) − ϕθ(B, (0, 0), t)) + (ϕθ(B, (0, t0), t) − ϕθ(B, (0, 0), t))
= ϕ(B, (0, t0), t),

hence (79) follows from (74).
Define a measure νθ,t on W × Γt by

νθ,t(dw × dγ) =
∂ ϕθ

∂γ
(dw, γ, t) dγ.

Then (79) implies

νθ,t(B × {γ′ | γ � γ′}) = µθ,t(B × [θ(γ, t), 1)), γ ∈ Γt .

This implies that, if we put Xθ,t = (idW , θ), where idW is the identity map on W , then µθ,t is the
image measure of νθ,t with respect to the map Xθ,t : W × Γt → W × [0, 1]:

µθ,t = νθ,t ◦ X−1
θ,t .

Therefore (75) follows. �

Theorem 6 Assume that G in (73) has a fixed point, and denote the fixed point by yC ∈ ΘT ;

yC = G(yC)(81)

Put ϕ = ϕyC
and µt = µyC ,t, where ϕθ and µθ,t are defined by (53) and (74) with θ = yC . Then

the so defined yC and µt satisfy all the properties stated in Theorem 1. �
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Remark. With (53) and (74), the theorem implies an expression

µyC ,t(dw × [yC(γ, t), 1)) =
∫

z∈[y0,1)
P[ NyC ,w,z(t) = NyC ,w,z(t0) ]µ0(dw × dz),

γ = (y0, t0) ∈ Γt ,
(82)

for the solution to Theorem 1.
The properties of the solution claimed in Theorem 1 are mostly contained in the previous propo-

sitions and explicit formulas. The remaining point is the Lipschitz continuity of µt: If w(y, t) = 0
for certain time interval for all w ∈ W , then the characteristic curve yC will remain constant for
the interval, and a small change in y = yC(γ, t) may result in a large change in γ and hence in µt .
It turns out that the situation causes no problem, because then the change in the quantity ϕ and
eventually µt are small in the time interval, hence continuity follows. �

Proof of Theorem 6. By definition (70), we have

yC(γ, t) = G(yC)(γ, t) = 1 − ϕyC
(W,γ, t),(83)

for which monotonicity properties stated in Theorem 1 are direct consequences of (53). Proposi-
tion 3 and Proposition 4 with explicit formula (71) and (72), or (53) and (56), imply that yC and
∂ yC

∂t
is continuous in (γ, t).

Let h : W → R be a measurable function satisfying (20). For (y, t), (y′, t) ∈ [0, 1] × [0, T ],
choose γ ∈ Γt and γ′ ∈ Γt such that y = yC(γ, t) and y′ = yC(γ′, t). We may assume γ � γ′. Then
monotonicity of yC implies y � y′, hence h(w) � 1 and (24) imply∫

W
h(w)µt(dw × [y, 1)) −

∫
W

h(w)µt(dw × [y′, 1)) =
∫

W
h(w)µt(dw × [y, y′))

� µt(W × [y, y′)) = y′ − y.

Next, for (y, t), (y, t′) ∈ [0, 1] × [0, T ], choose γ ∈ Γt and γ′ ∈ Γt′ such that y = yC(γ, t) and
y = yC(γ′, t′). Then, since, by definition (53), ϕ(B, γ, t) is monotone also in t,∣∣∣∣

∫
W

h(w)µt(dw × [y, 1)) −
∫

W
h(w)µt′(dw × [y, 1))

∣∣∣∣
=

∣∣∣∣
∫

W
h(w) (ϕ(dw,γ, t) − ϕ(dw, γ′, t′))

∣∣∣∣
� |ϕ(W,γ, t) − ϕ(W,γ′, t)| + |ϕ(W,γ′, t) − ϕ(W,γ′, t′)|
= |yC(γ, t) − yC(γ′, t)| + |yC(γ′, t) − yC(γ′, t′)|
= 2|y − yC(γ′, t)|
= 2|yC(γ′, t′) − yC(γ′, t)|
� 2 sup

(γ′′,t′′)∈∆T

∣∣∣∣∂ yC

∂t
(γ′′, t′′)

∣∣∣∣ |t′ − t|.

Using Proposition 4, monotonicity, and Proposition 3, with (83), we have

∂ yC

∂t
(γ, t) =

∫
γ�γ′

∫
W

w(yC(γ′, t), t)
∂ ϕ

∂γ
(dw, γ′, t′) dγ′

�
∫

γ′∈Γt

∫
W

‖w‖T

∂ ϕ

∂γ
(dw, γ′, t) dγ′

� MW e2CW t,
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which proves (21).
The initial conditions (22) and surjectivity for yC ∈ ΘT is contained in the definition (49) of

ΘT , and the initial condition (17), for for µt is in the definition (53) with Proposition 5.
For t > 0 and B ∈ B(W ), (74), (53), (17), and (19) imply

µt(dw × [0, 1)) = ϕ(dw, (0, t), t) = µ0(dw × [0, 1)) = λ(dw),

which proves (23).
For (y, t) ∈ [0, 1] × [0, T ] choose γ ∈ Γt such that y = yC(γ, t). Then (74) and (70) imply

µt(W × [y, 1)) = ϕ(W,γ, t) = 1 − G(yC)(γ, t) = 1 − yC(γ, t) = 1 − y

which proves (24).
To prove evolution equation (25), Proposition 5 implies, for γ = (y0, t0) ∈ Γt ,

µt(dw × [yC(γ, t), 1)) − µt0(dw × [y0, 1)) = ϕ(dw, γ, t) − ϕ(dw, γ, t0),

for which Proposition 4 and (75) further imply

µt(dw × [yC(γ, t), 1)) − µt0(dw × [y0, 1))

= −
∫ t

t0

(∫
γ�γ′

w(yC(γ′, s), s)
∂ ϕ

∂γ
(dw, γ′, s) dγ′

)
ds

= −
∫ t

t0

(∫ 1

yC(γ,s)
w(z, s)µs(dw × dz)

)
ds,

which proves (25). �

5 Fixed point and existence of solution.

In Theorem 6 we assumed existence of a fixed point θ = yC of a map G defined in (70). To complete
a proof of existence of a solution for Theorem 1, we prove that (70) has a fixed point. In fact, the
assumptions (12) and (13) on W imply that that the fixed point is unique. This is the core of the
existence proof for Theorem 1, and we heavily rely on the explicit formulas (71) and (72).

Theorem 7 The map G : Θ → Θ in (73) has a unique fixed point yC ∈ ΘT , namely, there is a
unique yC which satisfies (81). �

Proof. For t � 0 and θ and θ′ in ΘT define

d(θ′, θ, t) = sup
γ∈Γt

|θ′(γ, t) − θ(γ, t)|.(84)

We first accumulate basic formulas for evaluating ωθ,w,z in (51) and Ωθ,w,z in (52). In the following
lemma, we write Ωθ,w,z(s, t) also for s > 0 in (52) whenever it becomes notationally simpler, though
the quantity is actually independent of z for s > 0. Recall the notation Ω̃w(s, t) in (61).

Lemma 8 Let θ ∈ ΘT and θ′ ∈ ΘT . Then for (γ, t) ∈ ∆T with γ = (z, s), we have

(i) w(1, t) − CW � w(θ(γ, t), t) � w(1, t) + CW ,

(ii) 0 < e−Ωθ,w,z(s,t) � e−Ω̃w(s,t)+CW (t−s),
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(iii) |w(θ′(γ, t), t) − w(θ(γ, t), t)| � CW d(θ′, θ, t),

(iv) |e−Ωθ′,w,z(s,t) − e−Ωθ,w,z(s,t)| � CW e−Ω̃w(s,t)+CW (t−s)

∫ t

s
d(θ′, θ, v) dv.

�

Proof. The first estimate is an elementary consequence of (13) and the mean value theorem, if one
notes that θ(γ, t) ∈ [0, 1]. This and the definitions (52) and (61), and non-negativity of w ∈ W
leads to the second estimate. With the definition (84), the third estimate is similarly proved as the
first one. The last estimate follows from these estimates and

|e−x′ − e−x| = |e−(x′∨x) − e−(x′∧x)| = e−(x′∧x) (1 − e−|x′−x|) � e−(x′∧x)|x′ − x|.
�

Lemma 9 It holds that

d(G(θ′),G(θ), t) � 2CW e2CW T

∫ t

0
d(θ′, θ, v) dv, θ, θ ∈ ΘT , t ∈ [0, T ].(85)

�

Proof. If γ = (y0, 0) ∈ Γi, then applying Lemma 8 to (71), we have

|G(θ′)(γ, t) − G(θ)(γ, t)|
� CW eCW t

∫
W×[y0,1]

e−Ω̃w(0,t)σ(w, z)λ(dw) dz

∫ t

0
d(θ′, θ, v) dv, γ ∈ Γi t ∈ [0, T ].

Non-negativity of Ω̃w and (18) and the fact that λ is a probability measure further leads to

sup
γ∈Γi

|G(θ′)(γ, t) − G(θ)(γ, t)| � CW eCW T

∫ t

0
d(θ′, θ, v) dv, t ∈ [0, T ].(86)

The rest of the proof is for the case γ = (0, t0) ∈ Γt ∩ Γb . On applying Lemma 8 to each term of
(72), we use an elementary equality

n∏
i=1

bi −
n∏

i=1

ai =
n∑

j=1

(j−1∏
i=1

bi

)
(bj − aj)

( n∏
i=j+1

ai

)
,(87)

where, and in the following, we adopt a notation

0∏
i=1

bi =
n∏

i=n+1

ai = 1

to simplify the formulas. We apply (87) to the difference of (72) and its analog, with θ replaced by
θ′, where bi’s are the factors depending on θ′, and ai’s the factors depending on θ. We then apply
the last 2 estimates in Lemma 8 to the factor of the form bi − ai, and apply the first 2 estimates to
other factors. We have

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)| � I1(t0, t) + I2(t0, t),(88)
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where

I1(t0, t) = CW eCW t

∫
W

e−Ω̃w(0,t)

(
1

+
∑
k�1

∫
0�u1�...�uk�t0

k∏
i=1

(w(1, ui) + CW )
k∏

i=1

dui

)
λ(dw)

×
∫ t

0
d(θ′, θ, v) dv,

(89)

and

I2(t0, t) = CW eCW t

∫
W

e−Ω̃w(0,t) ×
∑
k�1

∫
0�u1�...�uk�t0

k∑
j=1

(
d(θ′, θ, uj)

×
∏

i; 1�i�k, i 	=j

(w(1, ui) + CW )
) k∏

i=1

duiλ(dw).

(90)

We apply (47) to (89), to find

I1(t0, t) = CW eCW t

∫
W

e−Ω̃w(0,t)eΩ̃w(0,t0)+CW t0λ(dw) ×
∫ t

0
d(θ′, θ, v) dv

= CW eCW (t+t0)

∫
W

e−Ω̃w(t0,t)λ(dw)
∫ t

0
d(θ′, θ, v) dv,

� CW e2CW T

∫ t

0
d(θ′, θ, v) dv.

(91)

To evaluate (90), we first change an integration variable uj to v and change the order of summation
for j and k, to find

I2(t0, t)

= CW eCW t

∫
W

e−Ω̃w(0,t)

∫ t0

0
d(θ′, θ, v)

×
(∑

j�1

∫
0�u1�...�uj−1�v

j−1∏
i=1

(w(1, ui) + CW )
j−1∏
i=1

dui

)

×
(∑

k�j

∫
v�uj+1�...�uk�t0

k∏
i=j+1

(w(1, ui) + CW )
k∏

i=j+1

dui

)
λ(dw) dv.

We apply (47) to the summation in j and to the summation in k, to find

I2(t0, t)

= CW eCW t

∫
W

e−Ω̃w(0,t)

∫ t0

0
d(θ′, θ, v)eΩ̃w(0,v)+CW v eΩ̃w(v,t0)+CW (t0−v) λ(dw) dv

= CW eCW (t+t0)

∫
W

e−Ω̃w(t0,t) λ(dw) ×
∫ t0

0
d(θ′, θ, v)dv

� CW e2CW T

∫ t

0
d(θ′, θ, v)dv.

(92)

The equations (88), (91), and (92) imply

sup
γ∈Γb∩Γt

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)| � 2CW e2CW T

∫ t

0
d(θ′, θ, v)dv.(93)

The equations (84), (86), and (93) finally imply (85). �
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Let us continue the proof of Theorem 7.
Define θ0 ∈ ΘT by

θ0((y0, t0), t) = y0 , ((y0, t0), t) ∈ ∆T ,(94)

and define a sequence of flows θk ∈ ΘT , k ∈ Z+, inductively by (94) and

θk+1 = G(θk), k ∈ Z+.(95)

Lemma 9 implies

d(θk+1, θk, t) = d(G(θk),G(θk−1), t) � C

∫ t

0
d(θk, θk−1, v)dv,

t ∈ [0, T ], k = 1, 2, . . . .
(96)

where C = 2CW e2CW T . Iterating, we obtain estimates which, by induction, is seen to have an
expression

d(θk+1, θk, t)

� Ck

∫
0�u1�...�uk�t

d(θ1, θ0, u1)
k∏

i=1

dui = Ck

∫ t

0

(t − u)k−1

(k − 1)!
d(θ1, θ0, u) du,

t ∈ [0, T ], k ∈ Z+.

(97)

Since θ ∈ ΘT takes values in [0, 1], the definition (84) implies

d(θ′, θ, t) � 1, θ, θ′ ∈ ΘT , t ∈ [0, T ].(98)

Substituting (98) in (97),

d(θk+1, θk, t) � (C t)k

k!
, k ∈ Z+.(99)

Since the summation in k of the right hand side of (99) converges to eC t,

θk(γ, t) = θ0(γ, t) +
k−1∑
i=0

(θi+1(γ, t) − θi(γ, t))

converges uniformly in (γ, t) ∈ ∆T . Denote the limit as

yC(γ, t) = lim
k→∞

θk(γ, t), (γ, t) ∈ ∆T .(100)

The equations (100), (95), and (99) imply (81). Since θk ∈ ΘT for all k, yC also takes values in
[0, 1], non-decreasing in γ for each t, and non-decreasing in t for each γ. Since the convergence
(100) is uniform in (γ, t), and θk ∈ ΘT are continuous, yC is also continuous. Also

yC((y0, t0), t0) = y0 , (y0, t0) ∈ ΓT ,

holds. In particular, yC((0, t), t) = 0 holds, and also (50) implies yC((1,0), t) = 1, hence with
continuity, yC is surjective in γ for each t. This proves yC ∈ ΘT , namely, existence of a fixed point
of G in ΘT .

Suppose there is another fixed point ỹC ∈ ΘT of G. Then (81) and Lemma 9 imply

d(θ′, θ, t) = d(G(θ′),G(θ), t) � C

∫ t

0
d(θ′, θ, v) dv, t ∈ [0, T ].

where C = 2CW e2CW T . Gronwall’s inequality implies d(θ′, θ, t) = 0, t ∈ [0, T ]. Namely, θ′ = θ.
This proves uniqueness of the fixed point of G. �
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6 Uniqueness of the solution.

In previous sections we proved existence of a solution (yC , µt) in Theorem 1. In this section we
complete the proof of Theorem 1 by proving that the solution is unique. Assume that (yC , µt) and
(ỹC , µ̃t) are the pairs which satisfy all the properties stated in Theorem 1.

Fix γ = (y0, t0) ∈ Γ , and let t � t0 . Since by assumption (µt, yC) satisfy equation of motion
(25) with initial and boundary conditions (22) and (23),

µt(dw × [yC(γ, t), 1))
= µt0(dw × [y0, 1))

+
∫ t

t0

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds

−
∫ t

t0

w(1, s)µs(dw × [yC(γ, s), 1))ds, t � t0 .

(101)

Note that (23) and (12) do not rule out a possibility that µt has an unbounded support concerning
‖w‖T. Therefore, a direct application of Gronwall type inequalities to the last term in the right
hand side of (101) may lead to divergent expression upon integration with respect to w. We work
around this problem by the following.

Lemma 10

µt(dw × [yC(γ, t), 1)) = e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+
∫ t

t0

e−Ω̃w(s,t)

∫
x∈[yC(γ,s),1)

∂ w

∂z
(x, s)µs(dw × [yC(γ, s), x)) dx ds,

(102)

where Ω̃w(s, t) is as in (61). �

Proof. Iterating (101) and using Fubini’s Theorem, we have

µt(dw × [yC(γ, t), 1))

= µt0(dw × [y0, 1))
k∑

�=0

1
�!

(−Ω̃w(t0, t))�

+
∫ t

t0

k∑
�=0

1
�!

(−Ω̃w(s, t))�
∫

z∈[yC(γ,s),1)
(w(1, s) − w(z, s))µs(dw × dz) ds

−
∫ t

t0

w(1, s)
1
k!

(−Ω̃w(s, t))kµs(dw × [yC(γ, s), 1))ds,

t � t0 , k = 0, 1, 2, . . . .

(103)

Since w ∈ W are non-negative valued, so are Ω̃w(s, t) for s � t and

0 � Ω̃w(s, t) � ‖w‖T T, 0 � s � t � T.(104)

Taylor’s Theorem and (104) imply

∣∣∣∣e−Ω̃w(s,t) −
k∑

�=0

1
�!

(Ω̃w(s, t))�
∣∣∣∣ � 1

(k + 1)!
(‖w‖T T )k+1,

0 � s � t � T, k = 0, 1, 2, . . . .

(105)
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Note also that (13) and the mean value theorem imply

|w(1, s) − w(z, s)| � CW , z ∈ [0, 1], s ∈ [0, T ].(106)

Fix a constant M > T (e.g., M = 2T ), and let B ∈ B(W ). Then, monotonicity of measures,
(103), (104), (105), (106), and (23) imply

∣∣∣∣
∫

B
e−M ‖w‖Tµt(dw × [yC(γ, t), 1)) −

∫
B

e−M ‖w‖T e−Ω̃w(t0,t)µt0(dw × [y0, 1))

−
∫ t

t0

∫
B

e−M ‖w‖T e−Ω̃w(s,t)

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds

∣∣∣∣
� T k+1

(k + 1)!
(1 + CW T + k + 1)

∫
B

e−M ‖w‖T ‖w‖k+1
T λ(dw)

� T k+1

(k + 1)!
(CW T + k + 2)λ(B) sup

x�0

xk+1 e−M x

� T k+1

(k + 1)!
(CW T + k + 2) sup

x�0

xk+1 e−M x,

t � t0 , k = 0, 1, 2, . . . .

(107)

By elementary calculus,

log sup
x�0

xk+1 e−M x = (k + 1) (log
k + 1
M

− 1)

=
∫ k+1

0
log y dy − (k + 1) log M

�
k+1∑
�=1

log � − (k + 1) log M = log
(k + 1)!
Mk+1

.

(108)

Combining (107) and (108), we have
∣∣∣∣
∫

B
e−M ‖w‖Tµt(dw × [yC(γ, t), 1)) −

∫
B

e−M ‖w‖T e−Ω̃w(t0,t)µt0(dw × [y0, 1))

−
∫ t

t0

∫
B

e−M ‖w‖T e−Ω̃w(s,t)

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds

∣∣∣∣
�

(
T

M

)k+1

(CW T + k + 2), t � t0 , B ∈ B(W ), k = 0, 1, 2, . . . ,

which implies, by fixing M > T and considering k → ∞,∫
B

e−M ‖w‖Tµt(dw × [yC(γ, t), 1)) =
∫

B
e−M ‖w‖T e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+
∫ t

t0

∫
B

e−M ‖w‖T e−Ω̃w(s,t)

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds

t � t0 , B ∈ B(W ).

This implies equality as a measure:

µt(dw × [yC(γ, t), 1)) = e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+
∫ t

t0

e−Ω̃w(s,t)

∫
z∈[yC(γ,s),1)

(w(1, s) − w(z, s))µs(dw × dz) ds.
(109)
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Using

w(1, s) − w(z, s) =
∫ 1

z

∂ w

∂z
(x, s) dx

with Fubini’s Theorem, we arrive at (102). �

Let us return to the proof of uniqueness in Theorem 1, and suppose there is another pair (µ̃, ỹC)
which satisfies all the properties stated in Theorem 1. Lemma 10 implies that (µ̃t, ỹC) satisfies an
integral equation similar to (102),

µ̃t(dw × [ỹC(γ, t), 1)) = e−Ω̃w(t0,t)µt0(dw × [y0, 1))

+
∫ t

t0

e−Ω̃w(s,t)

∫
x∈[ỹC(γ,s),1)

∂ w

∂z
(x, s)µ̃s(dw × [ỹC(γ, s), x)) dx ds.

(110)

The first term in the right hand side is equal to that of (102), because of the initial and boundary
conditions (23) and (24).

Put

I(t) = sup
h

sup
y∈[0,1)

∣∣∣∣
∫

W
h(w)µ̃t(dw × [y, 1)) −

∫
W

h(w)µt(dw × [y, 1))
∣∣∣∣,(111)

and

J(t) = sup
h

sup
γ∈Γt

∣∣∣∣
∫

W
h(w)µ̃t(dw × [ỹC(γ, t), 1)) −

∫
W

h(w)µt(dw × [yC(γ, t), 1))
∣∣∣∣,(112)

where the supremum for h in the right hand sides of (111) and (112) are taken over measurable
functions h : W → R satisfying (20). In particular, (26) implies

sup
γ∈Γt

|ỹC(γ, t) − yC(γ, t)| � J(t).(113)

Fix s and x, and put

h1(w) =
1

CW
h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s).

Then Ω̃w(s, t) � 0 and (13) imply that h1 : W → R satisfies (20) with h = h1 . The definitions
(111) and (112) then imply

∣∣∣∣
∫

W
h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s) µ̃s(dw × [ỹC(γ, s), x))

−
∫

W
h(w) e−Ω̃w(s,t) ∂ w

∂z
(x, s)µs(dw × [yC(γ, s), x))

∣∣∣∣
� CW

∣∣∣∣
∫

W
h1(w)µ̃s(dw × [ỹC(γ, s), 1)) −

∫
W

h1(w)µs(dw × [yC(γ, s), 1))
∣∣∣∣

+ CW

∣∣∣∣
∫

W
h1(w)µ̃s(dw × [x, 1)) −

∫
W

h1(w)µs(dw × [x, 1))
∣∣∣∣

� CW (I(s) + J(s)).

(114)

Also, monotonicity of measure implies
∣∣∣∣
∫

W
h(w) e−Ω̃w(s,t)∂ w

∂z
(x, s)µ̃s(dw × [ỹC(γ, s), x))

∣∣∣∣
� CW µ̃s(W × [0, 1]) = CW .

(115)
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Substituting (102) and (110) in (112), using (114) and (115), and also (113), we have

J(t) � sup
h

sup
γ∈Γt

∫ t

t0

(∣∣∣∣
∫ yC(γ,s)

ỹC(γ,s)
CW dx

∣∣∣∣ +
∫

x∈[yC(γ,s),1)

∣∣∣∣CW (I(s) + J(s))
∣∣∣∣ dx

)
ds

� CW sup
h

sup
γ∈Γt

∫ t

t0

(|ỹC(γ, s) − yC(γ, s)| + I(s) + J(s)) ds

�
∫ t

0
(I(s) + 2J(s)) ds.

(116)

Next, since by assumption, for each t, the map γ → yC(γ, t) is surjective, we have, from (111),

I(t) = sup
h

sup
γ∈Γt

∣∣∣∣
∫

W
h(w)µ̃t(dw × [yC(γ, t), 1)) −

∫
W

h(w)µt(dw × [yC(γ, t), 1))
∣∣∣∣.(117)

Using Lipschitz continuity (21), the definition (112), and (113), we have

I(t) � sup
h

sup
γ∈Γt

(|ỹC(γ, t) − yC(γ, t)| + J(t)) � 2J(t).(118)

The inequalities (117) and (118) imply

J(t) � 4
∫ t

0
J(s) ds, t ∈ [0, T ],

which, by Gronwall’s inequality, further implies J(t) = 0, t ∈ [0, T ]. This proves ỹC = yC , and
also (118) now implies I(t) = 0, t ∈ [0, T ], which proves µ̃t = µt . This completes a proof of the
uniqueness claim in Theorem 1.

A Application of Schauder’s fixed point theorem.

In this section we consider the case where we keep the fundamental condition (12), but replace the
global Lipschitz type condition (13) by a global bound condition on oscillation:

C ′
W := sup

w∈W
sup

(y,t), (y′,t′)∈[0,1]×[0,T ]
|w(y, t) − w(y′, t′)| < ∞,(119)

and consider the existence of fixed points to the map G : ΘT → ΘT defined by the explicit formula
(71) and (72), where the notations are introduced in (18), (19), (14), (15), (16), (49), and (52).
Note that G(θ) ∈ ΘT holds with the weaker assumption (119). This can be shown directly from
the explicit expression (72). The only condition for ΘT perhaps not obvious from the expression is
the range condition G(θ)(γ, t) ∈ [0, 1], which can be shown as follows. For k = 1, 2, . . . put

Ik =
∫

0�u1�···�uk�t0

w(θ((z, 0), u1), u1) e−Ωθ,w,z(0,u1)

×
k∏

i=2

(
w(θ((0, ui−1), ui), ui) e−Ωθ,w(ui−1,ui)

)

× e−Ωθ,w(uk,t)
k∏

i=1

dui
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and
Jk =

∫
0�u1�···�uk�t0

w(θ((z, 0), u1), u1) e−Ωθ,w,z(0,u1)

×
k∏

i=2

(
w(θ((0, ui−1), ui), ui) e−Ωθ,w(ui−1,ui)

) k∏
i=1

dui .

Note that non-negativity of Ωθ,w implies Ik � Jk. We can perform the uk integration in Jk to find
Jk = Jk−1 − Ik−1, which we can iterate to find

k∑
i=1

Ii = J1 − Jk + Ik � J1 = 1 − e−Ωθ,w,z(0,t0).

Substituting this in (72), and using monotonicity of Ωθ,w,z, (19), and λ(W ) = 1, we have 1 �
G(θ)((0, t0), t) � 0. A similar estimate for (71) is straightforward, hence we conclude G(θ) ∈ ΘT .

Theorem 11 . Under the condition (12) and (119), the map G : ΘT → ΘT has a fixed point. �

Remark. Since the proof relies on Schauder’s fixed point theorem, our proof has no control of unique-
ness of fixed points. �

The map G maps ΘT into itself, and ΘT is a subset of a Banach space (with the supremum norm)
of continuous functions C0(∆T ; [0, 1]) taking values in a finite interval [0, 1] ⊂ R. The domain ∆T

is homeomorphic to a rectangle, since its parameterization in the definition (16) is homeomorphic
to a trapezoid.

The Schauder fixed point theorem states [1, (2.4.3)] that a compact map of a closed bounded
convex set in a Banach space into itself has a fixed point. (The notational correspondence between
here and [1, §2.4] is given by X = C0(∆T ; [0, 1]), K = U = ΘT , and f = G.) We have shown
G(ΘT ) ⊂ ΘT at the beginning of this section.

Concerning the required properties for the domain ΘT of the map G, we have noted that
C0(∆T ; [0, 1]) is a bounded set. For a sequence of continuous and monotone functions, the limit
function with respect to the supremum norm also is continuous and monotone, and since for θ ∈ ΘT ,
θ((0, t), t) = 0 and θ((1,0), t) = 1 holds, these properties are also preserved in the limit. This and
continuity imply surjectivity of the limit function. Therefore ΘT is a closed set. The continuity,
monotonicity, the properties θ((0, t), t) = 0 and θ((1,0), t) = 1 are also preserved by convex linear
combination, hence ΘT is also convex. Thus ΘT is a closed, bounded, convex set.

It remains to prove compactness of G. Since C0(∆T ; [0, 1]) is a bounded set with respect to the
supremum norm, the Arzela-Ascoli theorem implies that it is sufficient to prove (i) that the map
G : ΘT → ΘT is continuous, and (ii) that the functions in the image set G(ΘT ) are equicontinuous,
which we prove in Lemma 13 and Lemma 14, respectively.

Note first that non-negativity of w ∈ W obviously implies

0 < e−Ω̃w(s,t) � 1, s � t,(120)

where Ω̃w(s, t) is as in (61).

Proposition 12 For θ and θ′ in ΘT , and (γ, t) ∈ ∆T with γ = (z, s), we have

(i) w(1, t) − C ′
W � w(θ(γ, t), t) � w(1, t) + C ′

W � ‖w‖T + C ′
W ,

(ii) 0 < e−Ωθ,w,z(s,t) � e−Ω̃w(s,t)+C′
W (t−s),
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(iii) |e−Ωθ′,w,z(s,t) − e−Ωθ,w,z(s,t)| � e−Ω̃w(s,t)+C′
W (t−s)

∫ t

s
|w(θ′(γ, u), u) − w(θ(γ, u), u)| du,

where C ′
W is as in (119), and ‖w‖T is defined by (11). �

Proof. (119) implies

|w(y, t) − w(1, t)| � C ′
W , w ∈ W, (y, t) ∈ [0, 1] × [0, T ],

which further implies
0 < e−Ωθ,w,z(s,t) � e−

� t
s

w(1,u)du+C′
W (t−s),

These estimates imply the first 2 estimates. The last estimate follows from these estimates and

|e−x′ − e−x| = |e−(x′∨x) − e−(x′∧x)| = e−(x′∧x)| (1 − e−|x′−x|) � e−(x′∧x)|x′ − x|.

�

Lemma 13 G : ΘT → ΘT is a continuous map. �

Proof. Let θ, θ′ ∈ ΘT , and put (γ, t) ∈ ∆T and γ = (y0, t0).
If γ = (y0, 0) ∈ Γi (t0 = 0), (71), Proposition 12，(120), and (19) imply

sup
y0∈[0,1]

sup
t∈[0,T ]

|G(θ′)((y0, 0), t) − G(θ)((y0, 0), t)|

� sup
y0∈[0,1]

sup
t∈[0,T ]

∫
W×[y0,1)

e−Ω̃w(0,t)+C′
W t

∫ t

0
|w(θ′((z, 0), u), u) − w(θ((z, 0), u), u)| du

× σ(w, z)λ(dw) dz

� T eC′
W T

∫
W×[0,1)

sup
u∈[0,T ]

sup
z∈[0,1]

|w(θ′((z, 0), u), u) − w(θ((z, 0), u), u)|λ(dw).

(121)

Concerning the rightmost hand side, we have

sup
u∈[0,T ]

sup
z∈[0,1]

|w(θ′((z, 0), u), u) − w(θ((z, 0), u), u)| � 2 ‖w‖T ,

while (12) implies
∫

W×[0,1)
‖w‖T λ(dw) = MW < ∞. Hence the integrand in the right hand side

of (121) is bounded, pointwise in w ∈ W , uniformly in θ′ by an integrable function. Therefore,
thanks to dominated convergence theorem we may interchange the order of integration and the
limit θ′ → θ in the right hand side of (121).

W ⊂ C1([0, 1] × [0, T ]; [0,∞)) and [0, 1] × [0, T ] is compact, hence each w ∈ W is uniformly
continuous. Hence for any ε > 0, there exists δ > 0 such that

(∀y, y′ ∈ [0, 1]; |y′ − y| < δ)(∀u ∈ [0, T ]) |w(y, u) − w(y′, u)| < ε.

If the supremum norm of θ′ − θ is less than δ we have

sup
u∈[0,T ]

sup
z∈[0,1]

|θ′((z, 0), u) − θ((z, 0), u)| < δ,
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which further implies

sup
u∈[0,T ]

sup
z∈[0,1]

|w(θ′((z, 0), u), u) − w(θ((z, 0), u), u)| � ε,

hence (121) implies

lim
θ′→θ

sup
y0∈[0,1]

sup
t∈[0,T ]

|G(θ′)((y0, 0), t) − G(θ)((y0, 0), t)| � T eC′
W T ε.

Since ε > 0 is arbitrary,

lim
θ′→θ

sup
y0∈[0,1]

sup
t∈[0,T ]

|G(θ′)((y0, 0), t) − G(θ)((y0, 0), t)| = 0.(122)

Next if γ = (0, t0) ∈ Γt ∩ Γb (y0 = 0), we proceed as in exact analogy to the proof of Lemma 9,
to find

sup
t∈[0,T ]

sup
t0∈[0,t]

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)|

� T e2C′
W T

∫
W

sup
(γ,u)∈∆T

|w(θ′(γ, u), u) − w(θ(γ, u), u)|λ(dw).

Therefore, as in the same reasoning as we derive (122) from (121),

lim
θ′→θ

sup
t∈[0,T ]

sup
t0∈[0,t]

|G(θ′)((0, t0), t) − G(θ)((0, t0), t)| = 0.(123)

Finally, (122) and (123) imply

lim
θ′→θ

sup
(γ,t)∈∆T

|G(θ′)(γ, t) − G(θ)(γ, t)| = 0,

which proves the continuity of G : Θ → Θ. �

Lemma 14 The functions in the set G(ΘT ) are equicontinuous. �

Proof. We see from elementary calculus using the mean value theorem and triangular inequality that
the following uniform estimates on the derivatives of G(θ) imply equicontinuity:

0 � ∂

∂y0
G(θ)((y0, 0), t) � 1, y0 ∈ [0, 1], t ∈ [0, T ],(124)

0 � ∂

∂t
G(θ)((y0, 0), t) � MW + C ′

W , y0 ∈ [0, 1], t ∈ [0, T ],(125)

0 � − ∂

∂t0
G(θ)((0, t0), t) � (MW + C ′

W ) e2C′
W T , t0 ∈ [0, t], t ∈ [0, T ],(126)

0 � ∂

∂t
G(θ)((0, t0), t) � (MW + C ′

W ) e2C′
W T , t0 ∈ [0, t], t ∈ [0, T ].(127)

The remainder of the proof is devoted to proving these estimates.
To prove (124), differentiate the explicit formula (71) by t0 and use (120) and (18). We have

0 � ∂

∂y0
G(θ)((y0, 0), t) =

∫
W

e−Ωθ,w,y0
(0,t) σ(w, y0)λ(dw)

�
∫

W
σ(w, y0)λ(dw) = 1,



29

which proves (124).
To prove (125), differentiate (71) by t, and use (52), Proposition 12, (120), (19), and (12), to

find
0 � ∂

∂t
G(θ)((y0, 0), t) =

∫
W×[y0,1)

w(θ((z, 0), t), t) e−Ωθ,w,z (0,t) σ(w, z)λ(dw) dz

�
∫

W×[0,1)
(‖w‖T + C ′

W )σ(w, z)λ(dw) dz = MW + C ′
W ,

which proves (125).
Proofs of (126) and (127) are similar. We differentiate (72) by t0 and t, respectively, and follow

a similar line. The only new point is that we apply (47) in a similar way as in the proof of Lemma 9.
This completes a proof of Lemma 14. �

As discussed in the beginning of this appendix, Lemma 13 and Lemma 14 prove Theorem 11.
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