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ABSTRACT

We present a new method of estimating the distribution of sales rates of, e.g., books at an
online bookstore, from the time evolution of ranking data found at websites of the store. The
method is based on new mathematical results on an infinite particle limit of the stochastic ranking
process, and is suitable for quantitative studies of the long tail structure of online retails. We give
an example of a fit to the actual data obtained from Amazon.co.jp, which gives the Pareto slope
parameter of the distribution of sales rates of the books in the store.
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1 Introduction.

Internet commerce has drastically increased product variety through low search and transaction
costs and nearly unlimited inventory capacity. With this new possibility a theory [Anderson, 2006]
has been advocated which claims that a huge number of poorly selling products (long tail products)
that are now available on internet catalogs could make a significant contribution to the total sales.
In this paper, we refer this theory as the possibility of long tail business.

In studying the possibilities of long tail business, we need a precise, quick, and costless quanti-
tative method of analyzing the long tail structure, but there we encounter a problem. For example,
online bookstores have millions of books on their electronic catalog, but many of the books have
average quarterly sales less than 1. This means that if we start collecting the sales record, we will
end up, after waiting for 3 months, with a list which has ten thousand lines with 0 sale and another
ten thousand with 1 sale, and so on. Moreover, the result does not mean that a particular book
with 1 sale has a better potential sales ability than a book with 0 sale: A problem characteristic
of quantitative analysis of long tail business is, that for product items of low sales potentials, fluc-
tuations dominate in the observed data. Even though we want to suppress fluctuations, since each
item produces very little profit, we cannot afford to spend time and money in collecting extensive
data over a long period required from the law of large numbers.

If we hope to estimate the total sales of a store, we could obtain it from an observation in
a short period with less relative fluctuations, thanks to the law of large numbers, because the
total number of book titles is large. On the other hand, for those who we are interested in the
long tail business, for example, an executive running the online store or a stockholder waiting for
disclosure, as well as an observer for research purpose, finding structure of the contribution of
less sold items would be important. More specifically, we would like to know the distribution of
sales potentials of the products at an online store, such as the ratios of the number of items with
average sales rate below any given number. As discussed in the previous paragraph, extracting the
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average sales rate of a single item would require a long time of observation. One might perhaps
then consider observing sufficiently many items of relatively low sales and calculate an average, to
suppress statistical fluctuations, but then one faces a problem of selecting product items of similar
sales potential.

On web pages, various ranking data can be found. An example is the sales rankings of books
at online bookstores such as Amazon.com. On the web page of each book, we see, as well as
the title, price, and description of the book, a number ranging from 1 to several millions which
indicates the book’s relative sales ranking at the online store. In this paper, we apply the analysis of
a mathematical model defined and studied in [K.&T. Hattori, 2008a, K.&T. Hattori, 2008b], and
propose a new and simple method of using the ranking data to accurately determine the distribution
of sales potentials of the products, especially at the tail side where statistical fluctuations are large.
Our method allows us, by observing how the sales ranking of a single product develops with time,
to reproduce the distribution of sales potentials of all the products sold at the online store. Our
theory could serve as an efficient and inexpensive method of a prompt analysis of long tail sales
structure.

The plan of the paper is as follows. In Section 2 we review the definition of stochastic ranking
process and a result which mathematically relates the time dependence of ranking data to the
distribution of sales potentials of the products. To statistically test the applicability of our theory
in practical situations, we apply in Section 3 the formulas summarized in Section 2 to the rankings
at Amazon.co.jp, a Japanese counterpart of Amazon.com. The results suggest that Amazon.co.jp,
known as a pioneering example of long tail business, is actually relying their sales more on great
hits than on long tail. As a further application of the stochastic ranking process, we recall the main
theorem of [K.&T. Hattori, 2008a] in Section 4, and discuss its implication on analysis of long tail
business in Section 5 and Section 6.

2 Stochastic ranking process.

In this section, we recall the stochastic ranking process proposed in [K.&T. Hattori, 2008a].
The stochastic ranking process is a simple model which describes the time development of sales

rankings at online bookstores. Consider a system of N items (say, book titles), each of which
is assigned a number between 1 and N (ranking number) such that no two items have the same
number. Each item sells at random times. Every time a copy of an item sells, the ranking number of
the item jumps to 1 immediately. If its ranking number was m before the sale, all the items that had
ranking number 1 through m− 1 before the sale shift to rank 2 through m, respectively. Thus, the
motion of an item’s ranking number consists of jumps to the top position and monotonous increase
in the number caused by the sales of numerous other items. We prove that under appropriate
assumptions, in the limit N → ∞, the random motion of each item’s ranking number between sales
converges to a deterministic trajectory.

To formulate the model mathematically, let us introduce notations and state assumptions. Let
i = 1, · · ·N be the labels which distinguish the items. We denote the ranking number of item i

at time t by X
(N)
i (t), for i = 1, 2, · · · , N . Assume that a set of initial rankings x

(N)
i,0 = X

(N)
i (0) ∈

{1, 2, · · · , N}, satisfying x
(N)
i (0) �= x

(N)
i′ (0) for i �= i′, and sales rates w

(N)
i > 0 are given. Namely,

items with various sales rates (books which sell well and books which sell poorly) start with these
given initial rankings x

(N)
i,0 , and set out to motion according to their sales rates. Let τ

(N)
i,0 = 0

and τ
(N)
i,j , i = 1, · · · , N , j = 1, 2, · · ·, be the j-th sales time of item i, which is a random variable.

Assume that sales of different items occur independently, and furthermore, for each i, the time
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interval between sales {τ (N)
i,j+1 − τ

(N)
i,j }j=1,2,··· are independent and have an identical exponential

distribution to that of τ
(N)
i,1 given by

P[ τ
(N)
i,1 � t ] = 1 − e−w

(N)
i t, t � 0.

A property of exponential distributions implies that w
(N)
i corresponds to the average number of

sales per unit time. In the time interval (τ (N)
i,j , τ

(N)
i,j+1) the ranking X

(N)
i (t) increases by 1 every time

one of the other items in the tail side of the sales ranking (i.e., with larger X
(N)
i′ (t)) sells. Thus,

the stochastic ranking process is defined as follows: for i = 1, · · · , N ,

(i) X
(N)
i (0) = x

(N)
i,0 ,

(ii) X
(N)
i (τ (N)

i,j ) = 1, j = 1, 2, · · ·,

(iii) for each i′ �= i and j′ = 1, 2, · · ·, if X
(N)
i (τ (N)

i′,j′ − 0) < X
(N)
i′ (τ (N)

i′,j′ − 0) then X
(N)
i (τ (N)

i′,j′ ) =

X
(N)
i (τ (N)

i′,j′ − 0) + 1, where τ
(N)
i′,j′ − 0 means the time ‘just before’ τ

(N)
i′,j′ ,

(iv) otherwise X
(N)
i (t) is constant in t. �

Since ranking numbers are determined by random sales times, the rankings numbers are also random
variables. This completes the definition of the stochastic ranking process.

Let x
(N)
C (t) = �{i | τ

(N)
i,1 � t}, where �A denotes the number of the elements of a set A. x

(N)
C (t)

is the number of the items which has sold at least once by time t. Note that in the ranking queue of
items, the item with rank x

(N)
C (t) marks a boundary; all the items with X

(N)
i (t) � x

(N)
C (t) (‘higher’

rankings) has experienced a sale, while those with X
(N)
i (t) > x

(N)
C (t) (‘lower’ rankings) have not

sold at all by time t.
We can also see x

(N)
C (t) + 1, 0 � t � T as the trajectory of the sales ranking of an item that

started with rank 1 at time 0 and has not sold by time T . It is convenient to consider the scaled

trajectory defined by y
(N)
C (t) =

1
N

x
(N)
C (t), for it is confined in the finite interval [0, 1]. The scaled

trajectory is random, but the following proposition shows that this random trajectory converges to
a deterministic (non-random) one as N → ∞.

Recall that item i has sales rate w
(N)
i . This determines the empirical distribution of sales rate

as λ(N)(dw) =
1
N

N∑

i=1

δ
w

(N)
i

(dw), where δc with c ∈ R denotes a unit distribution concentrated at c.

Namely, for any set A ⊂ [0,∞),
∫

A
δc(dw) =

{
1 , if c ∈ A,
0 , if c �∈ A.

Proposition 1 ([K.&T. Hattori, 2008a, Proposition 2]) Assume that the empirical distribu-
tion of sales rate λ(N) converges as N → ∞ weakly to a distribution λ. Then

y
(N)
C (t) → yC(t) (1)

in probability, where

yC(t) = 1 −
∫ ∞

0
e−wtλ(dw). (2)

�
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This proposition is a straightforward consequence of the law of large numbers. Intuitively, the
stochastic process y

(N)
C converges to the deterministic curve yC because a trajectory of an item

between the point of its sales is determined by the independent sales of numerous others (towards
the tail side of the book in observation in the ranking).

Remarks. (i) The random variable y
(N)
C (t) converges as N → ∞ to a deterministic quantity yC(t).

It implies that if N is large enough, the scaled trajectory provides us with fluctuation-free
information. If we try to know the sales rate of each product by counting the sales for a
certain period of time, we cannot avoid fluctuation. The more precise data we want, the
more time is needed to count the sales, especially for items that rarely sell. This proposition
ensures that by observing the time development of the sales ranking of a single item, we can
reproduce the distribution of sales rates, free of statistical fluctuation. The popularity of a
book, on the other hand, is reflected in the length of sojourn in the sequence before it makes
next jump.

(ii) L(t) =
∫ ∞

0
e−wtλ(dw) on the right-hand side of (2) is the Laplace transform of the distribution

λ. There is a uniqueness theorem according to which the Laplace transform completely
determines the distribution [Billingsley, 1995]. �

3 Application to sales analysis of Amazon.co.jp.

In this section, we give an explicit example of how the theoretical framework in Section 2 could
be applied to realistic situations. We will focus on the sales ranking data found at the websites of
Amazon.co.jp, the Japanese counterpart of the online bookstore Amazon.com.

We first give in Section 3.1 a brief explanation about the sales ranking number found at the web
pages for Japanese books at Amazon.co.jp, and summarize in Section 3.2 the method of applying
Section 2 to actual ranking data, and give an explicit result of statistical fits of the distribution of
sales rate of the books at the online bookstore.

3.1 Amazon.co.jp book sales ranking.

The websites of Amazon (irrespective of countries) have a web page for each book title, where
we find, as well as its title, author and price, a number which represents the sales ranking of the
book. It has been noticed [Chevalier etal., 2003, Brynjolfsson etal., 2003] that this number serves
as an important data for quantitative studies of the economic impact of online bookstores. This is
because the number reflects the sales rate of the book, and especially in the situation that, in terms
of [Brynjolfsson etal., 2003], ’internet retailers are extremely hesitant about releasing specific sales
data’, it can be one of the scant data publicly available.

We refer to [Chevalier etal., 2003] for general structure of the web pages, and to [Rosenthal, 2006]
for a summary based on apparently a long and extensive observation of the ranking number at Ama-
zon.com, and in particular, discussion on its relation to the actual sales of the book at Amazon.com.
Here we focus on observed facts about the time evolution of ranking numbers at Amazon.co.jp. It
is said that Amazon.com adopts somewhat involved definition of the ranking numbers than the
stochastic ranking process, while observations suggest that Amazon.co.jp adopts simple ‘jump to
top on sale’ algorithm as in the definition of stochastic ranking process. Simple as the model is, its
prediction fits rather well with observation (as we will see below) and allows the estimation of the
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Pareto slope parameter. (Another reason for looking at Amazon.co.jp data instead of Amazon.com
data is that it is easier for the authors to find appropriate data.)

If we keep observing the ranking number of a book for a while, we soon notice that it is updated
once per hour. For a relatively unpopular book title, the corresponding ranking number increases
steadily and smoothly for much of the time as the number is updated, but once in a while we see
a sudden jump to a smaller number around ten thousand. This happens when a copy of the book
is ordered for purchase, which can be checked by ordering a copy at Amazon.co.jp website: At the
update time which is 1 – 2 hours after the order, the ranking number is observed to jump. Except for
the top ten thousand sellers out of a few million Japanese book titles catalogued at Amazon.co.jp,
a book sells less than 1 per hour on average, hence the qualitative motion just described hold for
a majority of the book titles at Amazon.co.jp.

Note that this behavior of the time evolution of a ranking number at Amazon.co.jp is similar
to that of stochastic ranking model in Section 2. The correspondence is also natural from an
observation [Rosenthal, 2006] that the Amazon’s ranking number system ‘is based almost entirely
on “what have you done for me lately”’. For seldom sold books, any natural definition of the
ranking number satisfying such a criterion would be in the order of latest sales time, because any
sales record before the latest one should be further remote past and would have only a small effect
on any reasonable definition of the ranking number. Hence the definition of the stochastic ranking
process in Section 2, even though it may have sounded over-simplified, has a chance of being a
good theoretical basis for modelling the ranking numbers on the web, especially for probing a large
collection of titles in the long tail regime of the catalog.

If we further assume as usual that the point of sales are random, then we will have a full
correspondence between the stochastic ranking model and the time evolutions of ranking numbers
at Amazon.co.jp. Based on the correspondence, we give, in Section 3.2, explicit formulas which
relate a time evolution of a ranking number xC(t) to a distribution of average sales rate of the book
titles at the bookstore, and then using the formulas we give results of fits with observed data.

3.2 Stochastic ranking process analysis of book sales ranking.

We start with a standard assumption, as in [Chevalier etal., 2003, Brynjolfsson etal., 2003], that
the probability distribution of book sales rate is a Pareto distribution (also called a power law or
a log–linear distribution). In the notations of Section 2 this means that we assume the probability
measure λ (distribution of w) to be

λ([w,∞)) =

{ ( a

w

)b
, w � a,

1, w < a,
(3)

where, in terms of books in a bookstore, w denotes the average sales rate of a book (w copies per
unit time on average in the long run), and λ([w,∞)) is the ratio of the number of book titles with
sales rate w or more to the total number of titles. a and b are positive constants. The probability
density function of the Pareto distribution is given by

dλ

dw
(w) =

⎧
⎨

⎩

bab

wb+1
, w � a,

0, w < a.
(4)

Alternatively we could start with discrete formulation of the Pareto distribution

wi = a

(
N

i

)1/b

, i = 1, 2, 3, · · · , N, (5)
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where wi is the average sales rate of the i-th best seller. The ratio of titles with w or more average
sales rate is then

1
N

�{i | wi � w} =
1
N

�{i | i � N
( a

w

)b} =
( a

w

)b
,

for w � a, reproducing (3).
The constant a in (5) or in (3) denotes the lowest positive sales rate among the book titles at

the store. N is the total number of titles catalogued at the online bookstore with positive sales
rate. Note that the books never sell should be disregarded when applying the Pareto distribution
(5) or (3).

The exponent b (where −1
b

corresponds to the Pareto slope parameter) is crucial in the analysis
of economic impact of the retail business in question. In fact, previous studies using the ranking
numbers at the online bookstores [Chevalier etal., 2003, Brynjolfsson etal., 2003] use the data for
extracting the exponent b, which then was used to study various aspects of economic impact of
the online bookstores. An intuitive meaning of the exponent b can be seen, for example, by taking
ratio of (5) for i = 1 and N , to find

w1

wN
= N1/b, (6)

which roughly says that for large N if b is small then w1 is very large compared to wN , so that the
great hits dominate the sales, while if b is large the contributions are more equal among the book
titles, and since there are a majority of unpopular titles, their total contribution to the sales will
be important (the ‘long tail’ possibility). We will discuss further on quantitative implications of
the parameter b in Section 6.

Our method of obtaining the parameters a and b is to observe a time development of the
ranking of any single book title, which contains information of λ, with statistical fluctuations
strongly suppressed. (One may be curious why a data from a single title could have fluctuation
suppressed. This is because the time development of the ranking, during the book in question is
not sold, is a result of the total sales of the large amount of titles in the tail side of the observed
book in the catalog of an online bookstore, hence the statistical fluctuation is suppressed by a law-
of-large-numbers mechanism. This is a practical meaning of the deterministic motion appearing as
an infinite particle limit stated in Section 2.) Substituting (3) in (2) we have

yC(t) = 1 − bab

∫ ∞

a
e−wtw−b−1dw = 1 − b(at)bΓ(−b, at), (7)

where Γ is the incomplete Gamma function defined by Γ(z, p) =
∫ ∞

p
e−xxz−1dx. Since b is positive

Γ(−b, at) → ∞ as t → 0. This divergence is mathematically harmless because of the factor tb, but
from a practical point of view, it is convenient to use the integration-by-parts formula

Γ(z, p) = −z−1pze−p + z−1Γ(z + 1, p) (8)

to obtain
yC(t) = 1 − e−at + (at)bΓ(1 − b, at). (9)

This formula is satisfactory for 0 < b < 1. For 1 < b < 2 use (8) again to obtain

yC(t) = 1 − (1 − at

b − 1
) e−at − (at)b

b − 1
Γ(2 − b, at). (10)

In principle, we may perform integration by parts as many times as required, though we did not
come across values b � 2 in the literature or in our data. For b = 1, we need a slightly different
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formula with ‘logarithmic corrections’, but we have not observed any practical evidence that the
exact value of b = 1 occurs, so we will always assume b �= 1 in the following, to simplify the formulas.

Note in particular, that (9) implies that for b < 1 we have a concave time dependence for short
time,

yC(t) = (at)bΓ(1 − b, 0) + o(tb), (11)

while (10) implies that for b > 1 we have linear short time dependences. According to the results
in Section 2, yC(t) is the relative position (i.e., 0 � yC(t) < 1) at time t in the ranking of the title
which was at the top position (i.e. sold) at t = 0. The corresponding ranking number xC(t) is
given by

xC(t) � N yC(t) = N (1 − e−at + (at)bΓ(1 − b, at)). (12)

where N is the total number of the catalogued titles. We cannot control subleading order in N
because of the statistical fluctuations. (The limit theorems in Section 2 assures that the leading
order is free of statistical fluctuations.) However, since Amazon has a huge ‘electronic bookshelf’ of
order N = O(106), we will ignore the statistical fluctuations of relative order O(

√
N

−1
) = O(10−3).

Incidentally, we can alternatively start from (5) and use the empirical distribution
1
N

N∑

i=1

δwi

for λ, where δw is a unit distribution concentrated at w. Then from (2) we have, by elementary
calculus,

yC(t) = 1 − 1
N

N∑

i=1

e−a(N/i)1/bt = 1 −
∫ ∞

a
e−wtbab

∫ ∞

a
e−wtw−b−1dw + O(N−1),

reproducing (7).
Before closing this subsection, we recall that (2) implies that the ranking of an item is, as a

function of time t, essentially the Laplace transform of the underlying distribution λ of the jump
(sales) rates. If we have an accurate and long enough ranking data (i.e., observation of the time
evolution of the ranking xC(t) for a very long period and with very fine intervals), the uniqueness
of inverse Laplace transform assures in principle the determination of λ non-parametrically, i.e.,
without assumptions on λ such as assuming Pareto distribution (3). This approach however requires
a very fine data, because the Laplace transform has smoothing effect through e−wt factor, and a
small irregular differences in the Laplace transform could result in a large difference in the original
function. In the case of Amazon.co.jp, which we see in Section 3.3, the ranking is updated only once
per hour and we cannot expect fine enough data (as is also the case of Amazon.com), so we will
follow a standard approach assuming a Pareto distribution for λ. (Needless to say, the managers
in the Amazon company have access to precise real-time data, hence our methods will help them
analyze and plan the inventory controls and evaluate the sales.)

3.3 Results from Amazon.co.jp.

By performing a statistical fit to (12) of ranking number time evolution data, we can in principle
obtain the parameters a and b in (3) or (5) which determine the distribution of average sales rates
of the book titles at Amazon.co.jp. In the practical situations, it turns out that the total number N
of the book titles also needs to be determined from the data. We are aware that Amazon publicizes
on the website the total number of catalogued book titles, which can be reached by making an
unconditioned search at the Amazon website. However, the book catalog contains books which
never sell, so that as noted below (5), should be discarded in applying the Pareto distribution.
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We have experienced more than once that we order a book at the website and receive a note
after a while that the book has not been found and that the order is cancelled. At the same time,
we observe the ranking number of that cancelled title making jumps to the tail side. We thus
realize that the claimed number of titles at the website contains those with w = 0 and is therefore
strictly larger than what we should use for N in the Pareto distribution. As an explicit example,
the number from Amazon.co.jp search results was 2,587,571 on Oct. 4, 2007, while our fits indicates
N to be strictly less than 1 million (see (13)).

1,000 2,000 hrs

500,000

ranking

Fig 1: A long time sequence of data from Amazon.co.jp. The solid curve is a theoretical fit.
Horizontal and vertical axes are the hours and ranking, respectively.

We turn to our results of observation. The plotted nd = 77 points in Fig. 1 show the time
evolution of the ranking of a book we observed between the end of May, 2007 (at which point the
book was ordered) and mid August, 2007 (at which point the book was bought again). The solid
curve is a chi-square fit of these points to (12). The best fit for the parameter set (N, a, b) is:

(N∗, a∗, b∗) = (8.15 × 105, 5.30 × 10−4, 0.767). (13)

The best fits somewhat differ from those reported in [K.&T. Hattori, 2008b]. The previous
results used a naive least square fit of minimizing

∑

i

(xi − f(ti))2, where (ti, xi) denotes the i-th

data of time and ranking and f(t) denotes the right hand side of (12), while in this paper we
minimize

E = E(N, a, b) =
∑

i

(xi − f(ti))2

xi
. (14)
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The results of the two fits are qualitatively consistent, and the main conclusions do not change.
See Appendix for details on the statistical fit procedure.

The ranking data at Amazon websites are updated only once per hour, and since there are
many books which sell more than one per hour, we never observe ranking number 1 by tracing (as
we do) a book which sells only once per months. In fact, all the data used for the fits in the present
paper have ranking number greater than 10, 000, and as seen from Fig. 1, a dominant contribution
to E in (14) comes from data with ranking of order O(105), so that our results would reflect the
statistical behavior at tail side of the sales rates (small w) in (5).

Note that N∗ is large, hence the fluctuations arising from randomness in the sales are expected
to be relatively suppressed (O(1/

√
N∗) = O(10−3)), while the number is considerably smaller than

that claimed by Amazon.co.jp (8.15 × 105 < 2.6 × 106), so that a fit of N is necessary. a∗ in (13)
is in units of sales per hour and corresponds to 2.6 months for 1/a∗, which is roughly equal to the
interval of observation. The obtained value of a∗ does not mean that there are no books at all
which sells, say, only one copy a year on average; it says that such books are much less than would
be expected from a log-linear distribution (5) and have a negligible economic impact.

The minimum of E in (14) is

Emin = E(N∗, a∗, b∗) = 4.17 × 104, (15)

which implies the statistical fluctuation Δx ∼
√

Emin

nd
∼ 23. The majority of the data is of order

x ∼ O(105), hence the fit is good. We notice in Fig. 1 that a significant contribution to Emin, a
deviation between the data and the theoretical curve, comes from a small jump at about t = 300
hours. We suspect this as a result of inventory controls at the web bookstore, such as unregistering
books out of print. Apparently, Amazon.co.jp in the year 2007 was updating their catalog manually
and only occasionally, making it a kind of large noise for the present analysis.

4.8 5 5.2 5.4 5.6 5.8

0.7

0.725

0.75

0.775

0.8

0.825

0.85

8 8.05 8.1 8.15 8.2 8.25 8.3
0.72

0.74

0.76

0.78

0.8

0.82

7.8 7.9 8 8.1 8.2 8.3 8.4 8.5
4.6

4.8

5

5.2

5.4

5.6

5.8

6

Fig 2: Contour plots of E in (14), representing error estimates (confidence intervals) for the pa-
rameters. The data is as in Fig. 1. The three curves in each graph correspond to the confidence
level of 66%, 77%, 86%, from inner curve to outer curve, respectively. The dot in the center is the
best fit (13). The three figures are cross sections of N = N∗, a = a∗, b = b∗, respectively, in the
3-dimensional parameter space (N, a, b). Horizontal and vertical axes are respectively a × 104 and
b for the first figure, N × 10−5 and b for the second figure, and N × 10−5 and a× 104 for the third
figure.

As error estimates of statistical fits, Fig. 2 shows the contour curves of E = E(N, a, b) in (14).
For a constant e, E(N, a, b) = e defines a surface in the 3-dimensional parameter space (N, a, b).
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The three figures in Fig. 2 are cross sections of the surface by N = N∗, a = a∗, and b = b∗,
respectively, The three contours curves in each graph are defined by

E(N, a, b) = Emin

(
1 +

c√
nd

)
, (16)

with c = 0.5, 1, and 1.5, from inner curve to outer curve, respectively. (See (48) and (50) in the
Appendix.) The correspondence between c and the confidence level p is given in (49) and (50), and
as noted below (51), for nd = 77, c = 0.5, 1, and 1.5 correspond to p = 0.655627 · · ·, 0.76888 · · ·,
and 0.855119 · · ·, respectively,

1,000 2,000 3,000 hours

500,000

ranking

Fig 3: Two long time sequence of data from Amazon.co.jp. One sequence with 77 points is the
data in Fig. 1, another one with 27 points. The solid curve is a theoretical fit to the 77 + 27 = 104
points. Horizontal and vertical axes are the hours and ranking, respectively.

Concerning the stability of the parameters, we made another series of observation between
November, 2007 and March, 2008. This time, having less time to spare we recorded only once a
week resulting in 27 points. The solid curve in Fig. 3 is a chi-square fit of the combined 27 points
and the 77 points in Fig. 1 (nd = 104) to (12). The best fit for the parameter set (N, a, b) is:

(N∗, a∗, b∗) = (7.97 × 105, 5.93 × 10−4, 0.809). (17)

with Emin = 4.72 × 104 (Δx ∼
√

Emin

nd
∼ 21). The relative difference

δN∗

N∗ between (13) and (17)

is about 2%; 10% for a∗ and 5% for b∗. N∗ decreased while a∗ and b∗ increased.
If we take the change in the best fit of the parameters between (13) and (17) seriously, the

change is consistent with a hypothesis that Amazon.co.jp performed inventory controls and got
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rid of books with low sales between the two series of observations (explaining decrease in N∗ and
increase in a∗), and that great hits lost their power (explaining increase in b∗). Another possible
explanation is that the change in the fit is not serious, and that we need data with intervals finer
than once per week for stable fits. Automated data acquisition system by computer programming
may be useful in clarifying the situation.

Note that we consistently have b∗ < 1 for (13) and (17). We noted in (11) that the short time
behavior of the ranking is proportional to tb for b < 1 (which implies the graph is tangential to the
ranking axis), while is linear for b > 1. A look at Fig. 1 and Fig. 3 quickly reveals that our data sup-
ports b∗ < 1. Fig. 2 also shows that the error estimates of the parameters support b∗ < 1. Previous
studies [Chevalier etal., 2003, Brynjolfsson etal., 2003] adopt values b > 1. (The correspondence
of the notations is b = −1/β2 for [Brynjolfsson etal., 2003] and b = θ for [Chevalier etal., 2003].
In statistics textbooks b = α and a = 1/β are also used.) According to what we remarked below
(6), our conclusion b∗ < 1 implies that the economic impact of keeping unpopular titles at online
bookstores may have been overestimated in the previous studies. We will continue on this point in
Section 4.

4 Scaling limit of stochastic ranking process.

In this section we will recall the main Theorem in [K.&T. Hattori, 2008a]. Its application to
economic study will be discussed in Section 5 and Section 6.

Let us return to the stochastic ranking process defined in Section 2. Intuitively, we can guess
that near the top of the ranking, there are more items with large sales rates than in the tail regime.
This intuition can be made mathematically precise and rigorous:

Theorem 2 ([K.&T. Hattori, 2008a, Theorem 5]) Assume the following:

(1) The combined empirical distribution of sales rate and the initial scaled sales rankings y
(N)
i,0 =

1
N

(x(N)
i,0 − 1)

μ
(N)
y,0 (dw dy) =

1
N

∑

i

δ
w

(N)
i

(dw) δ
y
(N)
i,0

(dy),

converges as N → ∞ to a distribution μy,0(dw) dy on R+×[0, 1] which is absolutely continuous
with regard to the Lebesgue measure on [0, 1].

(2) λ({0}) = 0．

(3)
∫ ∞

0
wλ(dw) < ∞.

Then the combined empirical distribution of sales rate and scaled rankings Y
(N)
i (t) =

1
N

(X(N)
i (t)−

1)

μ
(N)
y,t (dw dy) =

1
N

∑

i

δ
w

(N)
i

(dw) δ
Y

(N)
i (t)

(dy)

converges as N → ∞ to a distribution μy,t(dw) dy which is absolutely continuous with regard to the
Lebesgue measure on [0, 1].
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In particular, the ratio of items with 0 < a � w � b and rankings in [0, y] ⊂ [0, 1) at time t is
given by

∫ y

0
μz,t([a, b]) dz =

⎧
⎪⎪⎨

⎪⎪⎩

∫ b

a
(1 − e−wt0(y))λ(dw), 0 � y < yC(t),

∫ b

a
(1 − e−wt)λ(dw) +

∫ b

a
e−wt

∫ ŷ(y,t)

0
μz,0(dw) dz, yC(t) < y < 1,

(18)

where t0(y) is the inverse function of the strictly increasing continuous function yC(t):

yC(t0(y)) = y, 0 � y < 1, (19)

and ŷ(·, t) is the inverse function of yC(y, t) = 1 −
∫ 1

y

∫ ∞

0
e−wtμz,0(dw) dz., which is a strictly

increasing continuous function of y.
Furthermore, the trajectory 1

N X
(N)
i (τi,j + t), time-shifted by τi,j, converges as N → ∞ to yC(t)

given in Proposition 1 up to the next jump time ( 0 � t � τi,j+1 − τi,j ). �

For mathematical details and a proof, see [K.&T. Hattori, 2008a, K.&T. Hattori, 2008b]. Assump-
tion (1) says that in actual applications we are considering a large number of items N 
 1, and that
we may regard the empirical distribution μ

(N)
y,0 at the starting point of observation as a continuous

distribution. Assumption (2) says that all the items sell. With extra notations Theorem 2 essen-
tially holds without Assumption (2), but we will keep it to avoid complications. This assumption
implies that yC is a strictly increasing function of t, and the inverse function t0 : [0, 1) → [0,∞)
exists. Under Assumption (2), yC(y, t) is a strictly increasing function of y, thus the inverse
ŷ(·, t) : [yC(t), 1) → [0, 1) exists. Assumption (3) assures the explicit form of the limit (18) in
Theorem 2 to hold for y = 0. For y > 0 Theorem 2 holds without Assumption (3).

Theorem 2 says that the (random) empirical distribution of this system (sales rates and scaled
rankings) converges to a deterministic time dependent distribution. In the definition of the stochas-
tic ranking process, we assume that each time a book is ordered the ranking of the title jumps to
1, no matter how unpopular the book may be. At first thought one might anticipate that such a
naive ranking will not be a good index for the popularity of books. But thinking more carefully,
one notices that well sold books (items with large w

(N)
i , in the model) are dominant near the head

of the ranking, while books near the tail are rarely sold. Hence, though the ranking of each book is
stochastic and has sudden jumps, the spacial distribution of jump rates are more stable, with the
ratio of books with large jump rate high near the head side and low near the tail side. Seen from
the bookstore’s side, it is not a specific book that really matters, but a totality of book sales that
counts, so the evolution of distribution of jump rate is important. Theorem 2 says that we can
make this intuition rigorous and precise, with an explicit form of the distribution when the total
number of titles in the catalog of the bookstore is large.

5 Formulas for the long tail structure of online retails.

In Section 3 we dealt with an application of the formula (2) in a practical situation, a prediction
on the time evolution of the ranking of a book. Theorem 2 in Section 4 contains more than that,
and predicts the total amount of sales expected from the items (e.g., books, in the case of an online
bookstore) on the tail side of any given ranking number m. Note that this is not equal to the
total contribution to the sales from the tail side when aligned in order of potential (average) sales



15

rate, which is
N∑

i=m

wi in the notation of (5). This is because, since the ranking number jumps to

the head each time the item sells at a random time, and since there are a very large number of
items (N 
 1), we always have some lucky items with low potential sales around the head side of
the rankings, and according to a similar argument, we also must have some ‘hit’ items towards the
tail side. Theorem 2 states that the ratio of such (un-)lucky items having ranking numbers very
different from those expected from their potential sales ability is non-negligible even in the N → ∞
limit.

An explicit formula can be derived from (18). Note that (2) and Assumption (2) for Theorem 2
imply lim

t→∞ yC(t) = 1, hence after a sufficiently long time since the start of the bookstore and its
ranking system, one may assume that the ranking reaches a stationary phase and the first equation
in (18) holds for all 0 � y < 1. Letting a = w and b = w + dw in (18) we have

∫

z∈[0,y]
μz,t(dw) dz = (1 − e−wt0(y))λ(dw). (20)

Let 0 < r1 < r2 � 1, and denote by S̃(r1, r2) the contribution to the total average sales per unit
time from the items with ranking number between r1N and r2N . For a very large N , we may let
N → ∞ and use (20) to find

lim
N→∞

1
N

S̃(r1, r2) =
∫

(w,z)∈[0,∞)×[r1,r2]
wμz,t(dw) dz

=
∫

(w,z)∈[0,∞)×[0,r2]
wμz,t(dw) dz −

∫

(w,z)∈[0,∞)×[0,r1]
wμz,t(dw) dz

=
∫ ∞

0
w(e−wt0(r1) − e−wt0(r2))λ(dw).

(21)

This is valid for an arbitrary sales rate distribution λ; for the Pareto distribution (4) we have, using
the incomplete Gamma function as in (7),

lim
N→∞

1
N

S̃(r1, r2) = ab (Γ(1 − b, q(r1)) q(r1)b−1 − Γ(1 − b, q(r2)) q(r2)b−1), (22)

where q(r) = a t0(r) is given by (19) with (9):

r = 1 − e−q(r) + q(r)b Γ(1 − b, q(r)). (23)

For 1 < b < 2, a better expression using (8) as in (10) would be

lim
N→∞

1
N

S̃(r1, r2) =
ab

b − 1
(e−q(r1)−Γ(2−b, q(r1)) q(r1)b−1−e−q(r2) +Γ(2−b, q(r2)) q(r2)b−1), (24)

with

r = 1 − e−q(r) (1 − q(r)
b − 1

) − q(r)b

b − 1
Γ(2 − b, q(r)). (25)

S̃(r1, r2) is to be compared with the contribution S(r1, r2) to the total average sales per unit
time from the items i between r1N and r2N in a decreasing order of potential sales rate wi, as in
(5). We have,

lim
N→∞

1
N

S(r1, r2) = lim
N→∞

1
N

r2N∑

i=r1N

wi = lim
N→∞

1
N

r2N∑

i=r1N

a

(
N

i

)1/b

= a

∫ r2

r1

x−1/bdx

=
ab

b − 1
(r(b−1)/b

2 − r
(b−1)/b
1 ).

(26)
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Note that q(0) = 0 and q(1) = ∞. The latter is from (7):

r = 1 − bq(r)b Γ(−b, q(r)) = 1 − b

∫ ∞

1
e−q(r)yy−b−1dy.

The last term is a convergent integral for b > 0, which is proved by (23) for 0 < b < 1 and by (25)
for 1 < b < 2. It converges to 0 as q(r) → ∞.

The special case of r2 = 1 corresponds to the contribution from the tail side in the ranking for
S̃(r, 1) and the tail side in the potential sales rate for S(r, 1) (the ‘long tail’), which are (after some
elementary calculus as above)

lim
N→∞

1
N

S̃(r, 1) = abΓ(1 − b, q(r)) q(r)b−1

=
ab

b − 1
(e−q(r) − Γ(2 − b, q(r)) q(r)b−1),

(27)

with q(r) given by (23) or (25), and

lim
N→∞

1
N

S(r, 1) =
ab

b − 1
(1 − r(b−1)/b). (28)

Concerning the contributions from the head side (‘great hits’), we note that the cases b > 1 and

b < 1 are different. This is easy to see in (26), where we find lim
r1→+0

lim
N→∞

1
N

S(r1, r2) = ∞ if b < 1,

while for b > 1, we can safely take r1 → 0 limit to find

lim
N→∞

1
N

S(0, r) =
ab

b − 1
r(b−1)/b.

This quantity represents an average sales rate per unit time per unit item, which is finite for the
realistic situations. For b < 1 great hits dominate in the total sales, which theoretically becomes
infinitely large as N → ∞ (see (5)), while for b > 1 all the items contribute non-trivially, and
that with a large number of items, the contribution from the ‘long tail’ will be significant, which
intuitively explains the difference in the behavior. The divergence is a result of N → ∞ limit. In
Section 6, we will consider cases b > 1 and b < 1 separately and discuss the implication of the value
of b in detail.

6 Implications of the Pareto exponent b.

We noted at the end of Section 5 (and also below (6)) that large b means that the ‘long tail’ is
important while small b means that great hits dominate. Intuitively, there are O(1) great hits
and O(N) long tail items, so the ratio of the contribution of the former to the latter is, using (6),

O(
w1 × 1

wN × N
) = N1/b−1, hence when the total number of items N is large, the dominant contribution

to the total sales change between b > 1 and b < 1.

6.1 Case b > 1: The long tail economy.

Let b > 1 and assume N is large.
For 0 � r � 1, the contribution to the total sales per unit time of the N(1 − r) items (out of

the total N) with low sales potentials is given by (28):

S(r, 1) � Nab

b − 1
(1 − r(b−1)/b). (29)
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In particular, the total sales per unit time at the online store is

Stot = S(0, 1) � Nab

b − 1
. (30)

Subtraction gives us the total sales amount from the Nr top hits per unit time:

S(0, r) � Nab

b − 1
r(b−1)/b. (31)

Similarly, (27) gives the contribution to the total sales per unit time from the N(1 − r) items
in the tail side of the ranking :

S̃(r, 1) � NabΓ(1 − b, q(r)) q(r)b−1 =
Nab

b − 1
(e−q(r) − Γ(2 − b, q(r)) q(r)b−1);

r = 1 − e−q(r) (1 − q(r)
b − 1

) − q(r)b

b − 1
Γ(2 − b, q(r)).

(32)

In particular, noting q(0) = 0 and

Γ(1 − b, q) qb−1 =
∫ ∞

1
e−qyy−b dy →

∫ ∞

1
y−b dy =

1
b − 1

, q → 0,

we have S̃(0, 1) =
Nab

b − 1
for b > 1, which is equal to (30) as expected, because all the items in the

store are listed on the ranking. Subtraction gives us the total sales amount from the top Nr items
in the ranking (at any given time, if the ranking is stationary) per unit time:

S̃(0, r) � Nab (1 − Γ(1 − b, q(r)) q(r)b−1) =
Nab

b − 1
(1 − e−q(r) + Γ(2 − b, q(r)) q(r)b−1). (33)

Large b implies that there is a good chance in the long tail business. For example, for an

extreme case of b = 2, (31) implies
S(0, 0.2)
S(0, 1)

�
√

0.2 � 0.447, so that top 20% of hit items

contribute only 45% of total sales, far less than 80% , challenging the widespread ‘20–80 law’.
This is, however, too extreme, and we should use realistic values. Concerning the analysis based
on the rankings of Amazon.com, Chevalier and Goolsbee [Chevalier etal., 2003] explored a number
of sources of information, including their own experiment, and obtained values for the exponent
b ranging from 0.9 to 1.3, and adopted the value b = 1.2 for their subsequent calculations, to
find, for example, that the online bookstores have more price elasticity than the brick-and-mortar
bookstores and have a significant effect on the consumer price index. Brynjolfsson, Hu, and Smith

[Brynjolfsson etal., 2003] uses b = 1.15 (−1
b

= β2 = −0.871 in their notations), to evaluate the
increase in consumer welfare by the introduction of a large catalog of books at the online bookstores.
They also quote the values in [Chevalier etal., 2003] and report a result of a similar experiment

to obtain b = 1.09. For b = 1.2 and b = 1.15 we have
S(0.2,1)

Stot
� 0.235 and

S(0.2,1)
Stot

� 0.189,

respectively, behaving more or less like ‘20–80 law’. Of course, we are considering N of order of
million (or more, with the advance in the web 2.0 technologies and online retails expected in the
near future) as in (13) or (17), and top 20% also means a large number. The term ‘possibility of
the long tail business’ makes sense for b > 1, in the sense that, with a drastic decrease in the cost
for handling a large inventory through online technology, a retail with a million items on a single
list may produce a large profit.
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Fig 4: Ratio of contribution to the total sales from lower N(1−r) items in the ranking to that from
lower N(1− r) items in the sales potential. The upper and the lower curves correspond to b = 1.15
and b = 1.2, respectively. The horizontal and vertical axes are r and S̃(r, 1)/S(r, 1), respectively.

Let us return to (32) and consider the role of the stochastic ranking process in inventory controls.
As an example, consider a situation where an online store is to open a new brick-and-mortar store
with rN items out of N item sold at the online store. If the manager knew the average sales rate
wi of each item i = 1, · · · , N (for example, based on past records at the online store), he would
choose the top rN items and the expected decrease in the total sales (per unit time) compared
to the online store will be S(r, 1). (wi will usually be estimated based on past record of sales,
and there is a potential problem, as expressed in Introduction, that for items with small wi, one
would have small sales records, and statistical fluctuations obscure precise determination of wi in
the long tail regime. Therefore the assumption that wi’s are known accurately to a manager of
a company may be rather unrealistic.) Now if the manager considered it quicker to select top
rN items in the ranking at the online store, what would be the extra loss? In this case, the

expected decrease in the total sales (per unit time) will be S̃(r, 1), so the ratio
S̃(r, 1)
S(r, 1)

measures

the extra loss from the use of ranking number in place of sales rate. Fig. 4 shows this ratio as a
function of r for 0.1 � r � 0.9, calculated using (32). As a value of b we adopted the values from
[Chevalier etal., 2003, Brynjolfsson etal., 2003]. The ratio turned out to be insensitive to r in this
range and shows 35% to 40% increase. (For r near 0 and 1, the ratio approaches 1, and the use
of ranking data is better. For large b the ratio also approaches 1, and we have also found that the
ratio is not sensitive up to b close to 1.) This shows an example of the use of ranking data as simple
and effective measure of analyzing sales structure of the long tails.

6.2 Case b < 1: The great hits economy.

Now let b < 1 and assume N is large.
As noted at the end of Section 5, when we are considering sales for b < 1, taking N → ∞ limit

results in unrealistic infinities arising from divergence of great hits, on average sales (per item).
Before studying this problem, we note that the time evolution of the ranking of a single item

which we discussed in detail in Section 3 has no problem. Theoretically, this reflects the fact that
we assume nothing on the distribution λ in Proposition 1. The problem of divergence of the average
sales rate is theoretically reflected only in the fact that Assumption (3) to Theorem 2 fails for b < 1.
As remarked below Theorem 2, this affects the distribution at y = 0, the top end of the rankings,
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but no theoretical problem occurs for y > 0. Intuitively speaking, if there are (fictitious) book titles
which sell ‘infinitely many copies per unit time’, they keep staying at the top end of the ranking,
and the rest of ‘realistic’ book titles follow the evolution of ranking as predicted by Proposition 1.
Also, the contribution to the total sales from the tail side (both S(r, 1) and S̃(r, 1) for r > 0) has
no problem of divergence, i.e., asymptotically proportional to N as in (29) or (32). In other words,
formulas not containing contributions from the ‘greatest hits’ are valid for b < 1 as well as for
b > 1: For 0 < r � 1, the contribution to the total sales per unit time from the N(1 − r) items

(out of total N) of low sales potentials is S(r, 1) � Nab

b − 1
(1 − r(b−1)/b), as in (29), and that from

the N(1 − r) items in the tail side of the ranking is, according to (32) with (23),

S̃(r, 1) � NabΓ(1 − b, q(r)) q(r)b−1; r = 1 − e−q(r) + q(r)b Γ(1 − b, q(r)).

In particular, we can perform a similar analysis as that concerning Fig. 4 using (32). The loss in
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Fig 5: Ratio of contribution to total sales from lower N(1 − r) items in the ranking to that from
lower N(1−r) items in the sales potential. The upper and the lower curves correspond to b = 0.767
and b = 0.809, respectively. The horizontal and vertical axes are r and S̃(r, 1)/S(r, 1), respectively.

total sales per unit time caused by selecting top rN items in the ranking instead of selecting top

rN items in the sales rate can be measured in terms of their ratio
S̃(r, 1)
S(r, 1)

. Fig. 5 shows this ratio

as a function of r for 0.01 � r � 0.9, calculated using (32). As a value of b we adopted the values
in (13) and (17). The ratio is below 1.6 and insensitive to r in this range. For r near 1, the ratio
approaches 1, and the use of ranking data is good. (Unlike the case b > 1 in Section 6.1, the ratio
remains strictly greater than 1 as r → 0.)

Note that b < 1 implies that great hits are dominant in the sales. It is a situation that a manager
planning to open a brick-and-mortar bookstore would safely discard less popular books and focus
on top 20 percent books, say, without losing majority of sales while saving costs from keeping too
many unpopular books. Fig. 5 suggests that using the ranking data of an online bookstore as a
quick way of selecting 20 percent books will increase no more than 50% of sales compared to the
(unrealistic) case that the the true average sales rates wis of the books are known and the top 20
percent of books are chosen according to wis.

Returning to the problem of unrealistic infinity, a simple modification for our approach would
be to introduce a cut off. Taking logarithms of (5) we have

log wi = log a − 1
b

log
i

N
= −1

b
log i +

1
b

log N + log a, i = 1, 2, · · · , N. (34)
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This formula shows that plotting the sales rates wi against i on a log–log graph, the points will
fall on a single line. (This suggests a reason why Pareto distribution is also called log-linear

distribution and that the exponent −1
b

is called the Pareto slope parameter.) When one assumes
Pareto distributions in social and economic studies, the argument would be in reverse direction; one
probably first observes data aligned close to a single line on a log–log graph, and then arrive at an
idealized theoretical model (34) or (5). The line actually has a finite length in realistic situations,
and (34) denotes the tail end by wN = a and the head end by w1 = aN1/b. We let N → ∞ in our
formulation and as a result lost the head end, which causes trouble in average sales rate for b < 1.
A simple remedy is therefore to introduce a cut-off parameter γ > 0 or n0 = γN , and assume a
modified Pareto distribution,

log wi = log a − 1
b

log
i + n0

N + n0
, i = 1, 2, · · · , N, (35)

or

wi = a

(
N + n0

i + n0

)1/b

, i = 1, 2, 3, · · · , N. (36)

γ = 0 or n0 = 0 is the original Pareto distribution (5). We assume Pareto distribution to be
basically applicable, so we assume γ � 1 (n0 � N).

Using (36) in the left hand side of (26), we have

lim
N→∞

1
N

S(r1, r2) =
ab

1 − b
(1 + γ)

(
(

1 + γ

r1 + γ
)(1−b)/b − (

1 + γ

r2 + γ
)(1−b)/b

)
. (37)

If γ = 0 (i.e., n0 = 0) we reproduce (28). We can safely let r1 → 0 in (37) and find

S(0, r) � Nab

1 − b
(1 + γ)

(
(
1 + γ

γ
)(1−b)/b − (

1 + γ

r + γ
)(1−b)/b

)
. (38)

In particular,

Stot = S(0, 1) � Nab

1 − b
(1 + γ)

(
(1 +

1
γ

)(1−b)/b − 1
)

� Nab

1 − b
γ−(1−b)/b. (39)

(The left hand side is obtained by taking leading term in γ � 1.) Note that we cannot let γ → 0
for Stot.

Other quantities can also be derived if we replace (5) by (36). Following the argument below
(5), we have, in place of (4),

dλ

dw
(w) =

⎧
⎪⎪⎨

⎪⎪⎩

0, w > aN1/b(1 + γ−1)1/b,
bab(1 + γ)

wb+1
, a < w < aN1/b(1 + γ−1)1/b,

0, w < a.

(40)

Substituting (40) in (2) we have, in place of (7),

yC(t) = 1 − b(at)b(1 + γ)Γ(−b, at) + b(at)b(1 + γ)Γ(−b, atN1/b(1 + γ−1)1/b). (41)

We note that we can take γ → 0 limit in (41) and reproduce (7). In other words, the effect of γ is
small for the evolution of ranking yC(t), if γ is small. In Section 3 we assumed the original Pareto
distribution, and performed a fit to (9) which is equal to (7). That this works implies that γ is
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actually small and that (7) is a good approximation to (41). In fact, as noted at the beginning
of this subsection Section 6.2, the effect of ‘greatest hits’ on the ranking is that they constantly
occupy the top positions. The ranking data at Amazon websites are updated only once per hour,
and since there are many books which sell more than one per hour, we never observe ranking 1 by
tracing (as we do) a book which sells only once per months. For such observations it is intuitively
clear that taking N → ∞ causes no singularities regardless of the value of b.

Reversing this argument, we see that since small difference in γ does not affect the evolution
of ranking yC(t), we cannot estimate the value of γ from yC(t). The dependence on γ of the total
sales Stot in (39) cannot be removed, hence for b < 1, we cannot estimate the total sales of the
online store from the ranking data. Our method is effective in studying the tail structures, but is
weak at great hits for b < 1. Standard methods, such as estimating from press reports about top
hits, should be combined, if the online store is not willing to disclose the total sales.

Returning to (39), we see that for b < 1 the total sales Stot could be very large (if the cut-off
parameter γ is very small) while (29) implies that S(r, 1), the contribution from the tail side, is

constant in γ, hence the ratio
S(r, 1)
Stot

could be very small. This is in contrast to the case b > 1

discussed in Section 6.1, where the ratio is significantly away from 0. In this sense, the contribution
to the sales from the long tail would be modest in general, and the impact of long tail business on
economy would be also modest, if b < 1. We however emphasize that, as we noted below Fig. 5,
a ranking data based on stochastic ranking process will be of practical use for b < 1 when, for
example, planning to get rid of long tail items from a store’s inventory.

Our calculations for Amazon.co.jp in Section 3 supports b < 1, in spite of the Amazon group’s
reputation for their long tail business. However, when we talk about possibility of long tail business,
there are other aspects than the contribution to the total sales or the direct economic impact of long
tails. For example, the phrase ‘a pioneering example of a long tail retail business’ is a highly effective
advertisement, and would be quoted by mass media, thereby would drastically reduce advertisement
cost. We therefore are not amazed if an online bookstore takes a strategy to advertise their long
tail business model, but is hesitant about disclosing its actual sales achievement, and makes profit
largely from advance orders of ‘great hits’ such as Harry Potter series.

7 Conclusion.

In this paper, we gave a mathematical framework of a new method to obtain the distribution of
sales rates of a very large number of items sold at an internet website retail store which disclose
sales rankings of their items. We gave explicit formulas for practical applications and an example
of a fit to the actual data obtained from Amazon.co.jp. The method is based on new mathemati-
cal results on the stochastic ranking process [K.&T. Hattori, 2008a, K.&T. Hattori, 2008b], and is
theoretically new and quantitatively accurate. (We have heard from a book publisher that Ama-
zon.co.jp are not willing to open their sales results. The publisher was amazed to know that we
could estimate Amazon’s sales structure from Amazon’s rankings.)

The method is suitable especially for quantitative studies of the long tail structure of online
retails, which has been expanding commercially with the advance in computer networks and web
technologies. Calculation algorithm of the ranking numbers is very simple, and will be relatively
easy to implement online. Hence it may serve as an efficient and inexpensive method for disclosure
policies and regulation purposes, as well as for providing the online store business a method of
prompt analysis of long tail sales structure for inventory controls. With a possible future increase
in online long tail business, a role of the present method in the business planning and disclosure
policies may increase its meaning.
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Since the result is based on mathematical results, it is in principle applicable to general situations
such as retail stores with POS systems, blog page view rankings, or the title listings of the web pages
in the collected web bulletin boards. In fact, we collected a preliminary data from 2ch.net, one of
the largest collected web bulletin boards in Japan, performed a fit to (12), and obtained a value b =
0.6145 for the Pareto exponent, which share a property b < 1 with (13). See [K.&T. Hattori, 2008b]
for details. In the 2ch.net title listing page, the titles are ordered by ‘the last written threads at
the top’ principle, which matches the definition of the stochastic ranking process. In this age
of rapidly expanding online business (and social activities on internet, in general), analysis on
long tail structure of the business and activities will be increasingly important. The stochastic
ranking process approach provides a new mathematical basis suitable for such analysis. It would
be preferable to have real time spontaneous updates of the ranking data as at 2ch.net on web pages
(for books at a website of an online bookstore, for example), which will not cost any more than the
current Amazon’s ranking data updates with hourly intervals.
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A Elementary formulas for the chi-square statistical fits.

For a data set {(ti, xi) | i = 1, · · · , nd}, satisfying xi > 0, i = 1, · · · , nd, and a function x = f(t) =
fN,a,b(t) (a theoretical curve) with parameters N, a, b, consider

E = E(N, a, b) =
∑

i

(xi − fN,a,b(ti))2

xi
, (42)

as in (14). We define the best fit of the parameters (N∗, a∗, b∗) = (N, a, b) by minimizing (42):

Emin = E(N∗, a∗, b∗) � E(N, a, b), for all (N, a, b). (43)

A model of the statistical errors consistent with (43) is

xi = fN,a,b(ti) +
√

v xiεi, i = 1, 2, · · · , nd , (44)

with (N, a, b) = (N∗, a∗, b∗), where εi’s are independent random variables each with standard normal
distribution N(0, 1), and v is a positive constant.

In Section 3, we take f(t) to be the right hand side of (12), which originally comes from (7)
or (2). As seen from (2), our concern in Section 3 is to statistically infer a distribution λ from
its Laplace transform as a time series data. In contrast to Fourier analysis, statistical inference
through a Laplace transform seems not to have been studied very much. If the distribution of the
errors to the data {xi} are independent Poisson distribution, (44) would be more or less a natural
formula, while for a Laplace transform, we do not have a strong argument for or against (44). Here
we will adopt (44) as a simple working model of error estimates.

Assuming (44), we have, from the law of large numbers,

1
nd

Emin =
1
nd

v

nd∑

i=1

ε2
i ∼ vE[ ε2

1 ] = v, (45)

asymptotically in data size (i.e., as nd → ∞). To evaluate statistical errors of (N∗, a∗, b∗), assume
that a slightly different values (N, a, b) are the true parameters. Assuming that (45) is asymptoti-
cally correct, we have, with (42) and (44),

E(N, a, b) = v
∑

i

ε2
i ∼ Emin

nd

∑

i

ε2
i (46)

which implies that the distribution of

χ2
nd

:= nd
E(N, a, b)

Emin
(47)

is asymptotically the chi-square distribution with nd degrees of freedom. In particular, for a positive
constant κ > 1, a surface in in the 3 dimensional parameter space, defined by

{(N, a, b) | E(N, a, b) =
κ

nd
Emin} (48)

corresponds (asymptotically) to the boundary of parameter values with confidence level p× 100%,
where

p = P[ χ2
nd

� κ ] (49)
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is the probability that a random variable with chi-square distribution of nd degrees of freedom takes
values κ or less. Asymptotically, it would be slightly more natural to parametrize κ as

c = (
κ

nd
− 1)

√
nd or

κ

nd
= 1 +

c√
nd

. (50)

This is because the mean and the variance of the chi-square distribution are E[ χ2
nd

] = nd and

V[ χ2
nd

] = 2nd , respectively, so that the law of Z =
1√
2nd

(χ2
nd

−nd) is asymptotically the standard

normal distribution N(0, 1) and

p = P[ χ2
nd

� κ ] ∼ P[ Z � c√
2

]. (51)

For example,
p value of (49) for nd = 77 corresponding to c = 0.5, 1, 1.5 are 0.655627 · · ·, 0.76888 · · ·,

0.855119 · · ·, respectively, and for nd → ∞, 0.638163 · · ·, 0.76025 · · ·, 0.855578 · · ·, respectively.


