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ABSTRACT
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1 Introduction.

The move-to-front (MTF) rule is an algorithm for a self-organizing linear list of a finite number of
items, say, {1, 2, . . . ,N}. The list is updated in the following way. At each discrete unit of time,
an item is requested, according to request probability pi > 0, i = 1, . . . ,N . If the item is found at
the kth position, it is moved to the top position and items in the first to the (k − 1)th positions
are moved down by one position. Successive requests are independent. This algorithm defines a
Markov chain on the state space of the permutations of {1, 2, . . . ,N}. There have been extensive
studies on the MTF model, dating back to [26, 20, 15].

In [12, 13, 14] we studied a continuous time Markov process which we called the stochastic
ranking process. The process corresponds to a Poisson embedding of the MTF chain into continuous-
time [10, 3]. Each item makes jumps to the top with jump rate per unit time wi (corresponding to
pi in the discrete-time model) independently of the others.

Near the top of the list, popular (often-jumped or often-requested) items tend to gather, but
there are always unpopular items mixed with popular ones. As a mathematically precise formulation
of such an observation, we proved in [12] that, under appropriate conditions such as the existence
of the limit jump-rate distribution λ as N → ∞, the joint distribution µ

(N)
t of the jump rate

(popularity) and the scaled position on the list converges as N → ∞, and also gave an explicit
formula for the limit distribution µt . We also obtained the expression for the boundary on the
list between items that have jumped at least once and those that have not. Under an appropriate
scaling, the boundary converges to a deterministic trajectory y = yC(t) as N → ∞. yC(t) is given
by the Laplace transform of the limit jump-rate distribution λ:

yC(t) = 1 −
∫ ∞

0
e−wtλ(dw).

µt mentioned above has a general expression in terms of the inverse function t0(y) of yC(t) and its
likes (see (22) or (23) in Section 2).

After [12, 13] were accepted for publication, we learned that the MTF rule has been in the
literature for nearly half a century [26, 20, 15, 5], and has also been called self-organizing search,
Tsetlin library [23], or more recently, least-recently-used (LRU) caching [17, 25]. In spite of a long
history of studies in the rule, the main results in [12, 13], which we summarize in Section 2, have
escaped being noticed. Mathematical reasons why the curve y = yC(t) plays an important role in
the formula for µt and also why its inverse function t = t0(y) appears in µt (see (22) or (23)) are
studied in [13], where it is proved that (22) satisfies a system of non-linear Burgers type partial
differential equations (PDE), which can be interpreted as a motion of mixed incompressible fluid
driven by evaporation. An initial value problem for the PDE is solved by a standard method of
characteristic curves, one of which is exactly the curve y = yC(t). The solution to the PDE is then
written using the inverse function of the characteristic curves. In view of this result, Theorem 2
could be viewed as a mathematical result on a hydrodynamic limit.

Our formula also has a direct practical application on the web. We noted in [13, 14] that the
characteristic curve y = yC(t) is actually observed on the internet as the time-development of web
rankings, which have become popular in the late twentieth century, as a result of the advance in web
technology. In [13, 14] we studied the popularity rankings of topics on 2ch.net, one of the largest
collected posting web pages in Japan, and the book ranking of the amazon.co.jp, the Japanese
counterpart of amazon.com, which is a large online bookstore quoted as one of the pioneering
‘long-tail’ business in the era of internet retails [1]. We performed a statistical fit of our model
to the actual data, and showed that we can apply to these social and economical activities the
stochastic ranking process with the (generalized) Pareto distribution as λ. Statistical fits have
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shown [13, 14] that these social and economical activities are more ‘smash-hit’ based rather than
long-tail, in contrast to the idea in [1]. The values of the Pareto parameter 0 < b < 1 have also been
found in a study of document access in the MSNBC commercial news web sites [22] by directly
counting the number of accesses.

Returning to the studies in MTF rules, among the earliest works are [26, 15, 19], where the
formula for the stationary distributions of the MTF Markov chain is given. Another earliest stud-
ies deals with the search cost, which is the position of the requested item before being moved.
(Figuratively, we can imagine a heap of reference papers. Every time we need a paper we start
our search from the top of the heap and after use we return it on the top.) The formula of the
average search cost for the stationary distribution is first derived in [20]. Comparison of search cost
probability with optimal ordering in the N → ∞ limit is considered [16]. The average search cost
for stationary distribution has been studied in [20, 5] and the comparison to that for the optimal
ordering is found in [5, 18, 23, 6]. A formula for generating function of the search cost is obtained
in [9]. Search costs for non-stationary cases have also been studied [2, 24, 8, 9]. There are also
studies of the conditional expectations of search costs [10], cache miss (fault) probability in the
least-recently-used (LRU) caching [7, 16, 17, 4, 25], and the cases of generalized Zipf law or Pareto
distribution as the jump-rate distribution [9, 16, 17, 25, 4]. For summary of various studies of MTF
models, see, for example, [8, 16, 25].

We will show in this paper that we can apply the mathematical results in [12, 13] to derive
formula for the asymptotic distribution of search cost CN , for general jump-rate distribution λ. A
basic formula in the case of stationary distribution is (33):

lim
N→∞

P∞[
1
N

CN > x ] =

∫ ∞

0
e−wt0(x)wλ(dw)∫ ∞

0
w λ(dw)

.

Using the formula above, we can obtain the asymptotics of the search cost probabilities, for general
λ. We have formula for non-stationary cases as well as the case of the stationary distribution (see
(41)).

The plan of the present paper is as follows. In Section 2 we summarize the main mathematical
results in [12, 13]. In Section 3 we use these results to derive the formula for the asymptotic dis-
tribution of search cost for general jump-rate distributions, both for stationary and non-stationary
cases. In Section 4 we reproduce and extend the formulas on asymptotics of the search cost prob-
abilities in the literature, using the results in Section 3, to show that our formula gives a unified
way of deriving the results for the search costs in the MTF model.

Acknowledgements.
The authors would like to thank Dr. N. Sugimine for bringing our attention to the keyword,

move-to-front rules. The research of T. Hattori is supported in part by KAKENHI 17340022 from
the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

2 Stochastic ranking process.

Let N be the total number of particles aligned in a queue (records of information in a serial file, in
terms of [20], or books on a single shelf, in terms of [15, 5]), and for i = 1, 2, · · · , N , and t � 0, let
X

(N)
i (t) be the position (ranking, in terms of [12, 13, 14]) of particle i in the queue at time t.

The particles jump at random jump times to the top position of the queue. Denote by τ
(N)
i,j , the

time that particle i jumps for the j-th time to the top position. Namely, for each i, X
(N)
i (τ (N)

i,j ) = 1,
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j = 1, 2, · · ·. (τ (N)
i,j is the time of j-th request of record i, in terms of [20], or the time that a book is

requested and returned at the left end of the shelf ‘nearest to the librarian’s desk’, in terms of [15, 5].)
Besides the jump to the top position, X

(N)
i (t) changes its value when some other particle nearer to

the tail position jumps to the top and the particle i is pushed towards the tail to make room for
the jumped particle. Namely, for each i′ �= i and j′ = 1, 2, · · ·, if X

(N)
i (τ (N)

i′,j′ − 0) < X
(N)
i′ (τ (N)

i′,j′ − 0)

then X
(N)
i (τ (N)

i′,j′ ) = X
(N)
i (τ (N)

i′,j′ − 0) + 1. Otherwise, X
(N)
i (t) is constant in t.

We assume that the jump times τ
(N)
i,j are independent in i, and are independent of X

(N)
i (t), i =

1, 2, · · · , N , t � 0. For simplicity of notation, we put τ
(N)
i,0 = 0, i = 1, 2, · · · , N , and further assume

that for each i = 1, 2, · · · , N , {τ (N)
i,j+1 − τ

(N)
i,j | j = 0, 1, 2, · · ·} are independent whose distribution are

identical for all j and are the exponential distribution

P[ τ
(N)
i � t ] = 1 − e−w

(N)
i t, t � 0 , (1)

for a positive constant (the jump rate of the particle i) w
(N)
i > 0.

Alternatively, we may define X(N) = (X(N)
1 , · · · ,X(N)

N ) as a Markov process on the state space
SN of the set of N ! permutations of {1, 2, . . . ,N}, with the Poisson jump times {τ (N)

i,j | i =
1, 2, · · · , N, j = 1, 2, 3, · · ·} determined by (1).

Note that with probability 1, τ
(N)
i,j , j = 0, 1, 2, · · ·, in (1) is strictly increasing, and that τ

(N)
i,j �=

τ
(N)
i′,j′ for any different pair of suffices (i, j) �= (i′, j′), unless j = j′ = 0. We may (and will) therefore

work on the event that these properties on τ
(N)
i,j ’s hold. In particular, if we align the distinct random

times τ
(N)
i,j in an increasing order and denote the k-th number by σ(N)(k), namely,

{σ(N)(k) | k = 0, 1, 2, 3, · · ·} = {0} ∪ {τ (N)
i,j | j = 1, 2, · · · , i = 1, 2, · · · , N};

0 = σ(N)(0) < σ(N)(1) < σ(N)(2) < · · · , (2)

then the stochastic chain Z(N)(k) = (X(N)
1 (σ(N)(k)), · · · ,X(N)

N (σ(N)(k)), k = 0, 1, 2, · · ·, is a Markov
chain on the state space of the permutations of (1, 2, · · · , N), satisfying the move-to-front rules of
[26, 20], with the request probability p

(N)
i of the record (or book) i given by

p
(N)
i = P[ σ(N)(1) = τ

(N)
i,1 ] =

∫ ∞

0

∏
j �=i

e−w
(N)
j t w

(N)
i e−w

(N)
i tdt =

w
(N)
i

w
(N)
1 + · · · + w

(N)
N

. (3)

Note also that σ(N)(k + 1) − σ(N)(k), k = 1, 2, · · ·, are exponentially identically distributed inde-
pendent random variables, with a common distribution

P[ σ(N)(1) � t ] = 1 − e−(w
(N)
1 +···+w

(N)
N )t, t � 0 . (4)

Let, as in [12], x
(N)
C (t) = �{i ∈ {1, 2, · · · , N} | τ

(N)
i � t} denote the boundary position in the

queue such that τ
(N)
i � t if X

(N)
i (t) � x

(N)
C (t) and τ

(N)
i > t if X

(N)
i (t) > x

(N)
C (t). Namely, the

particles towards the top side of x
(N)
C (t) have experienced a jump by time t, while none of the

particles on the tail side of x
(N)
C (t) has jumped up to time t.

Denote the empirical distribution of jump rates by

λ(N) :=
1
N

N∑
i=1

δ
w

(N)
i

, (5)
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where, here and in the following, δc denotes a unit distribution concentrated at c. Namely, for any
set A, ∫

A
δc(dw) =

{
1 , if c ∈ A,
0 , if c �∈ A.

Proposition 1 ([12, Proposition 2]) Assume

λ(N) → λ, N → ∞, (6)

for a probability distribution λ on [0,∞). Then for t � 0,

y
(N)
C (t) :=

1
N

x
(N)
C (t) =

1
N

�{i ∈ (1, 2, · · · , N) | τ
(N)
i � t} (7)

converges in probability as N → ∞ to

yC(t) = 1 −
∫ ∞

0
e−wtλ(dw). (8)

�

This result says that the trajectory of a particle starting at the top position is approximately given,
for large N , by a deterministic trajectory (adjusting the origin of the time parameter t = 0 to be
the time that the particle is at the top position)

NyC(t) = N(1 −
∫ ∞

0
e−wtλ(dw)) ∼ N(1 −

∫ ∞

0
e−wtλ(N)(dw)) =

N∑
i=1

(1 − e−w
(N)
i t), (9)

as long as it remains in the queue (i.e., conditioned that it does not jump). This is easy to recognize
by noting that the motion of a particle in the queue is caused by the random jumps of other particles,
and that the law of large numbers replaces random jump times by their expectations.

We hereafter assume (6), together with

λ({0}) = 0, (10)

and ∫ ∞

0
wλ(dw) < ∞. (11)

As noted in [12, Proposition 3], yC : [0,∞) → [0, 1) then is continuous, strictly increasing, and
bijective, hence the inverse function t0 : [0, 1) → [0,∞) exists, satisfying

yC(t0(y)) = y, 0 � y < 1 , (12)

and
y = 1 −

∫ ∞

0
e−wt0(y)λ(dw). (13)

Differentiating (8) and (12), we have

d yC

dt
(t) =

∫ ∞

0
we−wtλ(dw) =

1
d t0
dy

(yC(t))
. (14)
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Now, consider an N → ∞ scaling limit of the empirical distribution on the product space of
jump rate and position;

µ
(N)
t :=

1
N

∑
i

δ
(w

(N)
i ,Y

(N)
i (t))

(15)

where,

Y
(N)
i (t) =

1
N

(X(N)
i (t) − 1). (16)

We assume that the initial configuration of the queue (X(N)
1 (0), · · · ,X(N)

N (0)) = (x(N)
1,0 , · · · , x(N)

N,0) is

such that the initial empirical distribution µ
(N)
0 converges weakly as N → ∞ to a probability distri-

bution µ0 whose second marginal is the Lebesgue measure on [0, 1); for almost all y ∈ [0, 1), there
exists a probability measure µy,0 on the space of jump rates such that µ0(dw, dy) = µy,0(dw) dy.

To state our main result in [12], We generalize (8) and define

yC(y, t) = 1 −
∫ 1

y

∫ ∞

0
e−wtµz,0(dw) dz, t � 0, 0 � y < 1 . (17)

In particular, yC(t) = yC(0, t). For each t � 0, yC(·, t) : [0, 1) → [yC(t), 1) is a continuous, strictly
increasing, bijective function of y, hence the inverse function ŷ(·, t) : [yC(t), 1) → [0, 1) exists:

1 − y =
∫ 1

ŷ(y,t)

∫ ∞

0
e−wtµz,0(dw) dz, t � 0, yC(t) � y < 1. (18)

In an analogy to (9), the particle initially at the position Ny, will be approximately at NyC(y, t)
at time t for large N , provided the particle does not jump to the top position by the time t. It
holds that

∂ ŷ

∂y
(y, t) =

1∫ ∞

0
e−wtµŷ(y,t),0(dw)

. (19)

Theorem 2 ([12, Theorem 5]) Assume (6), (10), and (11), and the convergence of the initial
distribution µ

(N)
0 as N → ∞. Then the joint empirical distribution µ

(N)
t (dw, dy) of jump rate and

position at time t converges as N → ∞ to a distribution µt(dw, dy) = µy,t(dw) dy on R+ × [0, 1),
that is, for any bounded continuous function f : R+ × [0, 1) → R

lim
N→∞

1
N

∑
i

f(w(N)
i , Y

(N)
i (t)) =

∫ 1

0

(∫ ∞

0
f(w, y)µy,t(dw)

)
dy, in probability. (20)

The measure µy,t(dw) is given by

µy,t(dw) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

we−wt0(y)λ(dw)∫ ∞

0
w̃e−w̃t0(y)λ(dw̃)

, y < yC(t),

e−wtµŷ(y,t),0(dw)∫ ∞

0
e−w̃tµŷ(y,t),0(dw̃)

, y > yC(t).
(21)

�
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As noted in [12, §2.1 Remark], the assumption (11) assures that µ0,t is well-defined. The main
results in Theorem 2 for y > 0 hold without (11).

This completes a summary of main results in [12].
It is notationally simpler to write (21) in a form integrated by y. Recalling (14) and (19), we

have

µt(dw, [y, 1)) =
∫

z∈[y,1)
µz,t(dw) dz =

{
e−wt0(y)λ(dw), y < yC(t),
µ0(dw, [ŷ(y, t), 1))e−wt, y > yC(t).

(22)

Essential points about the formula are the importance of the curve y = yC(t), and appearance
of its inverse function t0 as well as the inverse function ŷ of yC(y, t). An important observation
in [13] concerning these points is that (22) satisfies a system of non-linear Burgers type partial
differential equations (see (25) in Theorem 3 below). An initial value problem for (25) is solved
[13] by a standard method of characteristic curves, which precisely are the curves y = yC(t) and
y = yC(y, t). The solution to the PDE is then written using the inverse function of the characteristic
curves.

To be explicit, consider, in particular, the case that the limit distribution of jump rates λ is a
discrete distribution: λ =

∑
α

ραδfα , where the summation is taken over finite or countably infinite

numbers, or equivalently, λ({fα}) = ρα, α = 1, 2, · · ·, where ρα’s are positive numbers satisfying∑
α

ρα = 1. For α = 1, 2, · · ·, put

Uα(y, t) := µt({fα}, [y, 1)) =
∫ 1

y
µz,t({fα})dz, (23)

and Uα(y) =
∫ 1

y
µz,0({fα}) dz for the initial data. Then (22) is written as

Uα(y, t) =
{

ρα e−fαt0(y) , y < yC(t),
Uα(ŷ(y, t)) e−fαt , y > yC(t).

(24)

Theorem 3 ([13, §2]) Under the assumptions in Theorem 2, (24) is the unique (classical) so-
lution to an initial value problem of a system of non-linear partial differential equations defined
by

∂ Uα

∂t
(y, t) +

∑
β

fβ Uβ(y, t)
∂ Uα

∂y
(y, t) = −fαUα(y, t), (y, t) ∈ [0, 1) × [0,∞), α = 1, 2, · · · , (25)

with the boundary condition Uα(0, t) = ρα α = 1, 2, · · ·, t � 0, and the initial data Uα(y, 0) = Uα(y),
α = 1, 2, · · ·. �

This completes a summary of the mathematical part of the main results in [13].

3 Asymptotic distribution of search cost probabilities.

In this section, we will relate our results summarized in Section 2 to the previous studies in move-
to-front rules.
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3.1 Search cost.

A typical quantity of interest in the studies of move-to-front rules is the search cost CN , which
denotes the position of a particle just before its jump to the top.

Let Q
(N)
1 be the random variable defined by

σ(N)(1) = τ
(N)

Q
(N)
1 ,1

(26)

where σ(N) is defined in (2). Then Q
(N)
1 matches the definition of Q1 in [20], and by definition,

P[ Q
(N)
1 = i ] = p

(N)
i , i = 1, · · · , N, (27)

where p
(N)
i is as in (3). CN (denoted by X in [20]) is then given by CN = X

(N)

Q
(N)
1

(σ(N)(1)−0). Note

that this is equal to X
(N)

Q
(N)
1

(0), because particles do not move before the first jump. We see from

Theorem 2 that, under the assumptions of Section 2, CN asymptotically scales as N in the limit
that N → ∞, and therefore the asymptotic properties of

1
N

CN = Y
(N)

Q
(N)
1

(0) (28)

where Y
(N)
i is defined in (16), is of interest.

3.2 Distribution of search cost: Stationary case.

As noted in Section 2, the stochastic ranking process can be viewed as a continuous-time Markov
chain on SN . Namely, X(N)(t) can be identified with an element π = (π1, . . . , πN ) of SN so
that πi = X

(N)
i (t), i = 1, . . . ,N . The stochastic ranking process viewed as a continuous-time

Markov chain on SN , has the stationary distribution. (The stationary distribution is essentially
the same as the stationary distribution of the move-to-front rules obtained by [26, 15] in a different
way of correspondence, πi being the label of the particle at the i-th position in the references.)
Denote by E∞ (P∞, respectively) the expectation (resp., probability) with respect to the sta-
tionary distribution for the initial configurations. If the distribution of the initial configuration
(x(N)

1,0 , · · · , x(N)
N,0) = (X(N)

1 (0), · · · ,X(N)
N (0)) is the stationary distribution, then it is the distribution

of (X(N)
1 (t), . . . ,X(N)

N (t)) for all t � 0. In particular, for the µ
(N)
t in (15),

µ(N)
∞ := E∞[ µ

(N)
0 ] = E∞[ µ

(N)
t ], t � 0. (29)

Let f(w, y) be a bounded continuous function with compact support. Let 0 < y0 < 1 be such
that f(w, y) = 0 for y � y0 , and let t > t0(y0), where t0 is as in (12). Note that µy,t in (21) for
t > t0(y) is constant in t and independent of the initial distribution. Theorem 2, together with
Fubini’s Theorem and dominated convergence Theorem, therefore implies

lim
N→∞

∫∫
(w,y)∈[0,∞)×[0,1)

f(w, y)µ(N)
∞ (dw, dy) = lim

N→∞

∫∫
(w,y)∈[0,∞)×[0,1)

f(w, y) E∞[ µ
(N)
t (dw, dy) ]

= E∞[
∫∫

(w,y)∈[0,∞)×[0,1)
f(w, y)µt(dw, dy) ] =

∫∫
(w,y)∈[0,∞)×[0,1)

f(w, y)we−wt0(y)dyλ(dw)∫ ∞

0
we−wt0(y) λ(dw)

(30)
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This implies that the joint empirical distribution µ
(N)
∞ of the jump rate and the position under the

stationary distribution in (29) converges as N → ∞ to

lim
N→∞

µ(N)
∞ (dw, dy) = µ∞(dw, dy) :=

we−wt0(y)dyλ(dw)∫ ∞

0
w̃e−w̃t0(y)λ(dw̃)

. (31)

The distribution function of
1
N

CN in (28) in the stationary state is then given by

P∞[
1
N

CN > x ] =
N∑

i=1

P∞[ Y
(N)
i (0) > x, Q

(N)
1 = i ]

=
N∑

i=1

P∞[ Q
(N)
1 = i ]P∞[ Y

(N)
i (0) > x ] =

N∑
i=1

p
(N)
i P∞[ Y

(N)
i (0) > x ]

=
N∑

i=1

w
(N)
i

P∞[ Y
(N)
i (0) > x ]
N∑

j=1

w
(N)
j

=

∫ ∫
(w,y)∈[0,∞)×(x,1)

w µ(N)
∞ (dw, dy)∫ ∞

0
w λ(N)(dw)

,

(32)

where, we first classified the total event by the first particle to jump, and then used the independence
of Q

(N)
1 and {Y (N)

i (0)}, and finally, (15) and (29). Combining (31) with (32), and changing the
integration variable y to t = t0(y), using (14), we have

lim
N→∞

P∞[
1
N

CN > x ] =

∫ ∫
(w,y)∈[0,∞)×(x,1)

w µ∞(dw, dy)∫ ∞

0
w λ(dw)

=

∫ ∫
(w,t)∈[0,∞)×(t0(x),∞)

e−wtdtw2λ(dw)∫ ∞

0
w λ(dw)

=

∫ ∞

0
e−wt0(x)wλ(dw)∫ ∞

0
w λ(dw)

.

(33)

Similarly, we have, for a measurable function f ,

lim
N→∞

E∞[ f(
1
N

CN ) ]

=

∫ ∫
(w,y)∈[0,∞)×[0,1)

wf(y)µ∞(dw, dy)∫ ∞

0
w λ(dw)

=

∫ ∫
(w,t)∈[0,∞)2

f(yC(t))e−wt dtw2λ(dw)∫ ∞

0
w λ(dw)

.
(34)

Note that if (11) fails, then the denominator in the right hand side of (33) and (34) diverges.

3.3 Search cost: Comparison with optimally ordered case.

Comparison between the search cost CN for the move-to-front rules and the search cost RN when
the particles are in the optimal static ordering, i.e., when the particles are arranged in decreasing
order of request probabilities pi, has been extensively studied [5, 6, 16].
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For 0 � x � 1, define w(N)(x) by

λ(N)([0, w(N)(x)]) =
1
N

[N(1 − x)], (35)

where [N(1 − x)] denotes the largest integer not exceeding N(1 − x). Noting (27), we have

P[
1
N

RN > x ] =

∫ w(N)(x)

0
wλ(N)(dw)∫ ∞

0
wλ(N)(dw)

. (36)

Taking ratio to (32), and proceeding as in the derivation of (33), we have

lim
N→∞

P∞[
1
N

CN > x ]

P[
1
N

RN > x ]
=

∫ ∞

0
e−wt0(x)wλ(dw)∫ w(x)

0
wλ(dw)

, 0 < x < 1. (37)

where,
λ([0, w(x)]) = 1 − x. (38)

Note that all the N → ∞ limit results so far, except for (37), assume the condition (11), whereas

(37) holds even if (11) fails;
∫ ∞

0
w λ(dw) = ∞. (See the remark after Theorem 2.) Furthermore, if

(11) holds, then (37), with (13), (38) and the dominated convergence theorem, implies

lim
x→+0

lim
N→∞

P∞[
1
N

CN > x ]

P[
1
N

RN > x ]
=

∫ ∞

0
wλ(dw)∫ ∞

0
wλ(dw)

= 1, (39)

which, considering a trivial equality P∞[
1
N

CN � 0 ] = P[
1
N

RN � 0 ] = 1, is a natural result. In

contrast, (39) may fail if
∫ ∞

0
w λ(dw) = ∞. (See Section 4.3.)

3.4 Distribution of search cost: Non-stationary case.

We can generalize (33) in Section 3.2 to the non-stationary cases. Let us return to the setting
in Section 2 and assume that the initial value of the process is given: (X(N)

1 (0), · · · ,X(N)
N (0)) =

(x(N)
1,0 , · · · , x(N)

N,0). Let τ (N)(t) = inf{σ(N)(k) | σ(N)(k) > t} and define I(N)(t) by τ (N)(t) = τ
(N)

I(N)(t),j

for some j. Define the search cost at time t by CN (t) = XI(N)(t)(t). We have,

Pt[
1
N

CN (t) > x ] =
N∑

i=1

Pt[ Yi(t) > x, I(N)(t) = i ] =
N∑

i=1

Pt[ Y
(N)
i (t) > x ] Pt[ I(N)(t) = i ]

=
N∑

i=1

w
(N)
i

Pt[ Y
(N)
i (t) > x ]
N∑

j=1

w
(N)
j

=

∫ ∫
(w,y)∈[0,∞)×(x,1)

w µ
(N)
t (dw, dy)∫ ∞

0
w λ(N)(dw)

.

(40)
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Letting N → ∞, we have

lim
N→∞

Pt[
1
N

CN (t) > x ] =

∫ ∫
(w,y)∈[0,∞)×(x,1)

w µy,t(dw) dy∫ ∞

0
w λ(dw)

, (41)

where µy,t is given by (21).
We also remark that since (21) coincides, for y < yC(t) , with the stationary distribution (31),

the speed of approach to stationary state is evaluated by (8):

1 − yC(t) =
∫ ∞

0
e−wtλ(dw). (42)

4 Formulas related to search cost probabilities in the move-to-

front rules.

Some formulas related to the search cost for the move-to-front rules have simple forms, and naturally
was found in the early studies. In this section we will derive formulas corresponding to some of
such nice formulas, in the formulation of Section 2.

4.1 Average search cost.

4.1.1 Asymptotic formula for the average search cost.

In [20], the average search cost under the stationary distribution E∞[ CN ] (denoted by µ in [5]) is
derived. Using the results and notations in Section 3 and Section 2, we can calculate the asymptotics
of this quantity. With (34) we have

lim
N→∞

E∞[
1
N

CN ] =
1∫ ∞

0
w λ(dw)

∫ ∫
(w,t)∈[0,∞)2

yC(t)w2e−wtλ(dw) dt.

Using (8) and performing the integration with respect to t0, we obtain

lim
N→∞

E∞[
1
N

CN ] =
1∫ ∞

0
w λ(dw)

(∫ ∞

0
wλ(dw) −

∫ ∞

0

∫ ∞

0

w2

w + w̃
λ(dw)λ(dw̃)

)

=
1∫ ∞

0
w λ(dw)

∫ ∞

0

∫ ∞

0

ww̃

w + w̃
λ(dw)λ(dw̃).

(43)

Let us check that (43) is consistent with the corresponding result in [20] (with notation changed
to those we adopt here):

E∞[ CN ] =
1
2

+
N∑

i=1

N∑
j=1

p
(N)
i p

(N)
j

p
(N)
i + p

(N)
j

.
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With (3) and (6) we have

E∞[
1
N

CN ] =
1

2N
+

1
N

N∑
i=1

N∑
j=1

w
(N)
i w

(N)
j

(w(N)
i + w

(N)
j )(w(N)

1 + · · · + w
(N)
N )

=
1

2N
+

1∫ ∞

0
wλ(N)(dw)

∫ ∞

0

∫ ∞

0

ww̃

w + w̃
λ(N)(dw)λ(N)(dw̃)

→ 1∫ ∞

0
wλ(dw)

∫ ∞

0

∫ ∞

0

ww̃

w + w̃
λ(dw)λ(dw̃), N → ∞,

which coincides with (43).

4.1.2 Comparison with search cost for the optimal ordering.

One of the first studies on comparison of the search cost CN with the search cost RN for the optimal
ordering introduced in Section 3.3 is found in [5], which gives a following universal bound for the
expectations:

E∞[ RN ] � E∞[ CN ] � 2E∞[ RN ] − 1.

Corresponding relations for N → ∞ then is

lim
N→∞

1
N

E∞[ RN ] � lim
N→∞

1
N

E∞[ CN ] � 2 lim
N→∞

1
N

E∞[ RN ]. (44)

To see that this relation follows from the results in Section 3, first note that

E∞[ RN ] =
N∑

i=1

ip
(N)
i =

∑
(i,j); p

(N)
i �p

(N)
j

p
(N)
i =

1
2

N∑
i=1

N∑
j=1

min{p(N)
i , p

(N)
j } +

1
2

.

With (3) and (6) we then have

E∞[
1
N

RN ] =
1

2
∫ ∞

0
wλ(N)(dw)

∫ ∞

0

∫ ∞

0
min{w, w̃}λ(N)(dw)λ(N)(dw̃) +

1
2N

,

hence
lim

N→∞
E∞[

1
N

RN ] =
1

2
∫ ∞

0
w λ(dw)

∫ ∞

0

∫ ∞

0
min{w, w̃}λ(dw)λ(dw̃). (45)

(44) is now a simple consequence of (45) and (43), if one notes a simple inequality

1
2

min{x, y} � xy

x + y
� min{x, y}, x � 0, y � 0.

We also note that there is a result [6] which proves that a Hilbert’s inequality implies a stronger
universal upper bound, which implies for the present case,

lim
N→∞

1
N

E∞[ CN ] � π

2
lim

N→∞
1
N

E∞[ RN ]. (46)
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In fact, as derived in [6] we have,

1
2

∫ ∞

0

∫ ∞

0
min{w, w̃}λ(dw)λ(dw̃) =

∫
w�w̃

wλ(dw)λ(dw̃) =
∫ ∞

0
wλ([w,∞))λ(dw)

= − w

2
λ([w,∞))2

∣∣∣∞
0

+
1
2

∫ ∞

0
λ([w,∞))2dw =

1
2

∫ ∞

0
λ([w,∞))2dw,

and∫ ∞

0

∫ ∞

0

ww̃

w + w̃
λ(dw)λ(dw̃)

=
∫ ∞

0

[
− ww̃

w + w̃
λ([w,∞))

]w=∞

w=0

λ(dw̃) +
∫ ∞

0

∫ ∞

0

(
w̃

w + w̃

)2

λ(dw̃)λ([w,∞))dw

= −
∫ ∞

0

[(
w̃

w + w̃

)2

λ([w̃,∞))
]w̃=∞

w̃=0

λ([w,∞))dw +
∫ ∞

0

∫ ∞

0

2ww̃

(w + w̃)3
λ([w,∞))λ([w̃,∞))dwdw̃

=
∫ ∞

0

∫ ∞

0

2ww̃

(w + w̃)3
λ([w,∞))λ([w̃,∞))dwdw̃,

which, with the Hilbert’s inequality in the form [11, §9.3] for K(x, y) =
4xy

(x + y)3
, p = q = 2, and

g = f � 0;

∫ ∞

0

∫ ∞

0

4xy

(x + y)3
f(x)f(y)dxdy � k

∫ ∞

0
f(x)2dx; k =

∫ ∞

0
K(x, 1)

dx√
x

=
4Γ(3

2 )2

Γ(3)
=

π

2
,

imply (46).

4.1.3 Conditional expectations of search costs.

In [5], the average search cost conditioned on specific particle i (denoted by µi in the reference),
has been obtained. It is related to E∞[ CN ] by

E∞[ CN ] =
N∑

i=1

p
(N)
i µi . (47)

In terms of the conditional expectation E∞[ CN | Q
(N)
1 ], conditioned on the sigma algebra

σ[Q(N)
1 ] = σ[{σ(N)(1) = τ

(N)
i,1 }, i = 1, 2, · · · , N ]

(recall (26)), we have
E∞[ CN | Q

(N)
1 ](ω) = µi , if Q

(N)
1 (ω) = i. (48)

With (3) we reproduce (47).
In considering such quantities, we naturally come across the distribution of ‘jumped particles’,

that is, the distribution of Q
(N)
1 . Note that the time evolution of the system is dependent only

on the jump rates. Therefore the search cost of particle i in the stationary state is dependent on
i only through its jump rate w

(N)
i ; if w

(N)
i = w

(N)
j then the search cost for i and j has the same

distribution. In particular,
E∞[ CN | Q

(N)
1 ] = E∞[ CN | WN ], (49)

where WN = w
(N)

Q
(N)
1

.
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Proceeding as in the argument for (32), we have, for a bounded measurable function f ,

E∞[ f(WN ) ] =
N∑

i=1

f(w(N)
i )P∞[ Q

(N)
1 = i ]

=
N∑

i=1

p
(N)
i f(w(N)

i ) =

∫ ∫
(w,y)∈[0,∞)×[0,1)

f(w)w µ(N)
∞ (dw, dy)∫ ∞

0
w λ(N)(dw)

.

As in (33), Theorem 2 therefore implies, for a bounded continuous function f

lim
N→∞

E∞[ f(WN) ] =

∫ ∫
(w,y)∈[0,∞)×[0,1)

f(w)w µ∞(dw, dy)∫ ∞

0
w λ(dw)

=

∫ ∞

0
f(w)w λ(dw)∫ ∞

0
w λ(dw)

. (50)

In other words, the distribution of the jumped particle jump rates in the stationary state converges

weakly to a probability measure
w λ(dw)∫ ∞

0
w̃ λ(dw̃)

, as N → ∞.

Since t0(0) = 0, this distribution is equal to µ0,∞ in (31), which is the distribution at the top
end of the queue. An intuitive meaning of this equality is that the jumped particles jump to the
top position (the requested records are placed at the top position) so the distribution at y = 0 is
the distribution of the jumped particles.

As noted in (49), to obtain the average search cost of a specific particle i (denoted by µi in [5]),
it suffices to calculate the average search cost conditioned on the jump rate of the jumped particle
f(WN ) = E∞[ CN | WN ]. A basic property of conditional expectation, with (43) and (50), implies

1∫ ∞

0
w λ(dw)

∫ ∞

0

∫ ∞

0

ww̃

w + w̃
λ(dw)λ(dw̃) = lim

N→∞
E∞[

1
N

CN ] = lim
N→∞

E∞[ E∞[
1
N

CN | WN ] ]

=
1∫ ∞

0
w λ(dw)

∫ ∞

0
lim

N→∞
E∞[

1
N

CN | WN ](w)w λ(dw).

Thus we find
lim

N→∞
1
N

E∞[ CN | WN ](w) =
∫ ∞

0

w̃

w + w̃
λ(dw̃). (51)

This result is to be compared with µi in [5, Eq. (10)], which reads in our notation,

1
N

E∞[ CN | WN ](wi) =
1
N

µi =
1

2N
+

1
N

N∑
j=1

w
(N)
j

w
(N)
i + w

(N)
j

.

For large N , (6) then implies

1
N

E∞[ CN | WN ](w(N)
i ) =

1
2N

+
∫ ∞

0

w̃

w
(N)
i + w̃

λ(N)(dw̃) ∼
∫ ∞

0

w̃

wi + w̃
λ(dw̃),

which is consistent with (51).
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4.2 Cache miss probability.

If x � yC(t) we can reduce (41) further and have

lim
N→∞

Pt[
1
N

CN (t) > x ] =

∫ ∞

0
e−wt0(x)wλ(dw)∫ ∞

0
w λ(dw)

. (52)

This is because the limiting distribution µy,t for y < yC(t) is equal to that for stationary case µy,∞.
(See (21) and (31).) Hence we have, for x � yC(t),

lim
N→∞

Pt[
1
N

CN > x ] = 1 − lim
N→∞

Pt[
1
N

CN � x ] = 1 − lim
N→∞

P∞[
1
N

CN � x ]

= lim
N→∞

P∞[
1
N

CN > x ],

so that (33) implies (52).
The cache miss (fault) probability in the least-recently-used (LRU) caching has been one of

the modern area of extensive study in the application of the move-to-front rules [7, 16, 17, 4, 25].
If there is N records of information in a computer memory, or N web pages on the internet, out
of which Nx records or pages, respectively, can be cached for a further quick access, the event
CN > Nx represents cache miss or cache fault, by regarding particles as records of information or
web pages to be accessed. The probability (52) is therefore of interest.

In particular, [4] considers a quantity, defined, in our notation, by

M (N)(t) = Pt[
1
N

CN > y
(N)
C (t) ]. (53)

Recalling the definition (7) of y
(N)
C , we see that M (N)(t) is the probability that the jump at time

t is the jumped particle’s first jump since t = 0. M (N)(t) therefore corresponds to the cache miss
(fault) probability in an ideal case that all the once requested records are stored in a cache memory
of ideally large size.

Since the limiting distribution (41) of
1
N

CN is continuous and and y
(N)
C (t) converges in proba-

bility to yC(t), we have

lim
N→∞

M (N)(t) = lim
N→∞

Pt[
1
N

CN (t) > yC(t) ]. (54)

Substituting x = yC(t) in (52), we have

M(t) := lim
N→∞

M (N)(t) = lim
N→∞

Pt[
1
N

CN (t) > yC(t) ] =

∫ ∞

0
e−wtwλ(dw)∫ ∞

0
w λ(dw)

. (55)

Note that M(t) is independent of the initial configuration µ
(N)
0 .

4.3 Case of generalized Zipf law or Pareto distribution.

In the preceding subsections, we dealt with formula for an arbitrary distribution of the jump rates λ.
In the literature, there are formula for specific request probabilities, among which the generalized
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Zipf law (also known as power-law) is of importance in practical applications. Let a and b be
positive constants and consider the jump rates

wi = a

(
N

i

)1/b

, i = 1, 2, 3, · · · , N. (56)

In applying to move-to-front rules, a = wN is the smallest jump rate and b =
log N

log
w1

wN

is an exponent

representing the equality of jump rates among the particles.
In [13, 14] we studied the rankings of 2ch.net and amazon.co.jp. 2ch.net is one of the largest

collected posting web pages in Japan. Posting web pages are classified by categories (‘boards’), and
each category has a list of topics of posting web pages (‘threads’). These lists are updated by the
‘last-written-thread-at-the-top” rule. Amazon.co.jp is the Japanese counterpart of amazon.com,
which is a large online bookstore quoted as one of the pioneering ‘long-tail’ business in the era
of internet retails [1]. They show sales ranks of all the books on their catalogs. We have shown
that we can apply the stochastic ranking process with the (generalized) Pareto distribution for the
distribution of jump rates in these social and economical activities, and by performing statistical
fits of the data from these web results, we extracted the index b in (56). We obtained b = 0.61
for 2ch.net and b = 0.81 for amazon.co.jp, both indicating 0 < b < 1, which implies that these
social and economical activities are more ‘smash-hit’ based rather than long-tail, in contrast to
the idea in [1]. The values in 0 < b < 1 has also been found in a study of document access in
the MSNBC commercial news web sites [22] by direct measurements (that is, the distribution λ is
directly measurable in the study of [22] and a theory of move-to-front rules is unnecessary).

Let us turn to the search cost probabilities. λ of (6) is readily calculated:

λ([0, w]) =

{
0, 0 � w < a,

1 −
( a

w

)b
, w � a.

(57)

The continuous distribution λ determined by (57) is called the (generalized) Pareto distribution
[21] (or log-linear distribution), especially in social studies, and is used to explain various social
distributions, typically that of incomes.

With (38) we have w(x) = ax−1/b, and the denominator in the right hand side of (37) is

∫ w(x)

0
wλ(dw) =

ab

1 − b
(x1−1/b − 1). (58)

For the numerator of (37) we have∫ ∞

0
e−wt0(x)wλ(dw) =

∫ ∞

a
e−wt0(x) b

( a

w

)b
dw =

b

t0(x)
(at0(x))b Γ(1 − b, at0(x)), (59)

where Γ(z, p) =
∫ ∞

p
e−wwz−1 dw is the incomplete Gamma function. To evaluate this, we recall

(13) and perform integration by parts, to find

1 − x =
∫ ∞

0
e−wt0(x) bab

wb+1
dw = e−at0(x) − (at0(x))bΓ(1 − b, at0(x)). (60)



17

Substituting (58), (59), and (60) in (37), we have

lim
N→∞

P∞[
1
N

CN > x ]

P[
1
N

RN > x ]
=

1 − b

at0(x)
e−at0(x) − 1 + x

x1−1/b − 1
. (61)

This formula is valid for all b > 0 and 0 < x < 1.
Concerning the condition (11), we see from (57),∫ ∞

0
wλ(dw) =

ab

b − 1
, (62)

so that (11) is equivalent to b > 1 for the Pareto distribution. Hence, as discussed in Section 3.3,
(39) holds if b > 1. In contrast, if 0 < b < 1, then noting lim

x→+0
t0(x) = 0 (which is seen from the

definition (13)), we have lim
x→+0

Γ(1 − b, at0(x)) = Γ(1 − b), and (60) implies

at0(x) ∼
(

x

Γ(1 − b)

)1/b

, x → 0 if 0 < b < 1,

and (61) then implies

lim
x→+0

lim
N→∞

P∞[
1
N

CN > x ]

P[
1
N

RN > x ]
= (1 − b) Γ(1 − b)1/b. (63)

The quantity in the right hand side of this result is obtained in [16, Theorem 3]. Note that the
reference formulates N = ∞ case from the beginning (in our notation, this is attained by letting a
to be proportional to N−1/b in (56)), and a limit n → ∞ is taken in Theorem 3 of [16]. We begin
with N → ∞, fixing x, and then take x → 0 limit in (63). Rigorously speaking, these are different
limits and (63) is a new result. However, since our x and n in [16] are related by n = Nx when
N < ∞, both results are consistently talking about ‘large N , large n, and small x’ for 0 < b < 1.

Concerning (34), a general formula for the expectation of search cost, we have

lim
N→∞

E∞[ f(
1
N

CN ) ] = (b − 1)(at)b−2a

∫ ∞

0
f(yC(t))Γ(2 − b, at)dt, (64)

where, (8) implies
yC(t) = 1 − b(at)bΓ(−b, at). (65)

Noting that
d yC

dt
(t) = ab(at)b−1Γ(1 − b, at)

and an integration by parts formula

Γ(z + 1, p) = e−ppz + zΓ(z, p)

for the incomplete gamma function, we have another expression

lim
N→∞

E∞[ f(
1
N

CN ) ] = (b − 1)
∫ ∞

0
f(yC(t))e−at dt

t
− (b − 1)2

ab

∫ 1

0

f(y)
t0(y)

dt. (66)
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It seems, however, difficult to simplify the formula for general f .
Concerning the miss probability M(t) of (55), the denominator is finite if b > 1, and we have,

after an integration by parts,

M(t) = (b − 1)(at)b−1

∫ ∞

at
e−xx−bdx = e−at − (at)b−1Γ(2 − b, at).

For 1 < b < 2 this implies

M(t) = 1 − Γ(2 − b)(at)b−1 + O(at), t → 0. (67)

In [4] the web caching is studied, in which the hit-ratio for the R-th request is defined, in our
notation, by

H(N)(R) = 1 − M (N)(σ(N)(R)),

where M (N)(t) is defined in (53) and σ(N)(k) in (2). With (67) and properties of σ(N) (see (4)),
together with law of large numbers, we see that H(R) = lim

N→∞
H(N)(NR) scales as Rb−1. This is

consistent with the argument in [4] which claims H(R) ∝ Rb−1 for 1 	 R 	 N . The reference
further obtains 1/b = 0.83 − 0.90 (b = 1.11 − 1.20) using actual web data.
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