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Abstract

Existence of critical renormalization group trajectory for a hierarchical Ising model in 4 dimensions is shown. After

70 iterations of renormalization group transformations, the critical Ising model is mapped into a vicinity of the

Gaussian fixed point. Convergence of the subsequent trajectory to the Gaussian fixed point is shown by power decay

of the effective coupling constant. The analysis in the strong coupling regime is computer-aided and Newman’s

inequalities on truncated correlations are used to give mathematical rigor to the numerical bounds. In order to

obtain a criterion for convergence to the Gaussian fixed point, characteristic functions and Newman’s inequalities

are systematically used.

1 Introduction and main result.

Dyson’s Hierarchical spin system is an equilibrium statistical mechanical system defined as follows [4, 16,
3, 6, 14]. Let Λ be a positive integer, and denote the 2Λ variables (spin variables) φθ, Hamiltonian HΛ,
and the expectation values 〈·〉, respectively, by

φθ = φθΛ,...,θ1 , θ = (θΛ, ..., θ1) ∈ {0, 1}Λ,

HΛ(φ) = −1
2

Λ∑
n=1

( c
4

)n ∑
θΛ,...,θn+1


 ∑
θn,...,θ1

φθΛ,...,θ1




2

,

〈F 〉Λ,h =
1

ZΛ,h

∫
dφF (φ) exp(−βHΛ(φ))

∏
θ

h(φθ),

ZΛ,h =
∫

dφ exp(−βHΛ(φ))
∏
θ

h(φθ),

where h is a single spin measure density normalized as∫
R

h(x)dx = 1.

In the following, we shall fix the so far arbitrary normalization of the spin variables by

β =
1
c
− 1

2
. (1.1)
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Hierarchical models are so designed that the block-spin renormalization group transformation R has a
simple form. In fact, R is a non-linear transformation of functions on R, defined as follows. Define the
block spins φ′ by

φ′
τ =

√
c

2

∑
θ1=0,1

φτθ1 , τ = (τΛ−1, ..., τ1).

If a function F (φ) depends on φ through φ′ only, namely, if there is a function F ′(φ′) on the block spins
such that

F (φ) = F ′(φ′),

then it holds that

〈F 〉Λ,h = 〈F ′〉Λ−1,Rh ,

where

Rh(x) = const. exp(
β

2
x2)

∫
R

h(
x√
c

+ y)h(
x√
c
− y) dy, x ∈ R. (1.2)

Note that

hG(x) = const. exp(−1
4
x2) (1.3)

is a fixed point of R, which we shall refer to as the density function of the massless Gaussian measure. By
looking into the asymptotics of e.g., susceptibility for the hierarchical massless Gaussian model defined by
(1.3), and comparing it with that of standard nearest neighbor massless Gaussian models on d-dimensional
regular lattice, we see that the dimensionality d of the system may be identified (at least for the Gaussian
fixed point) as

c = 21−2/d (β =
1
2

(22/d − 1)). (1.4)

We shall extend the correspondences to hierarchical models with arbitrary measures, and use the termi-
nology d-dimensional hierarchical models whenever (1.4) holds.

Asymptotic properties of the renormalization group trajectories

hN = RNh0 , N = 0, 1, 2, · · · , (1.5)

are extensively investigated in a ‘weak coupling regime’ i.e., in a ‘neighborhood’ of hG [16, 3, 6, 7, 8]. In
particular, it is known that, if d ≥ 4, then there are no non-Gaussian fixed points in a ‘neighborhood’
of hG , and that a ‘continuum limit’ constructed from a critical trajectory with an initial function in a
‘neighborhood’ of hG is trivial (Gaussian).

However, in order to study asymptotic properties of strongly coupled models, we have to analyze
trajectories (1.5) with initial functions in a ‘strong coupling regime’ far away from the Gaussian fixed
point.

As a typical example, we consider in this paper the hierarchical Ising model, which is defined by the
Ising spin measure density parameterized by s ≥ 0:

hI,s(x) =
1
2

(δ(x− s) + δ(x + s)), (1.6)

which may be regarded as a strong coupling limit of the φ4 measures:

hµ,λ(x) = const. exp(−µx2 − λx4), µ = −2λs2, λ → ∞.

Here and in the following, we use the standard notation δ(x − s) dx denoting a probability measure with
unit mass on a single point x = s. Hierarchical Ising model has an infinite volume limit Λ → ∞, if 0 < c < 2
(d > 0), and has a phase transition, if 1 < c < 2 (d > 2) [4].

It has been widely believed without proof that the hierarchical Ising model in d ≥ 4 dimensions has a
critical trajectory converging to the Gaussian fixed point and that the ‘continuum limit’ of the hierarchical
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Ising model in d ≥ 4 dimensions will be trivial. In this paper, we prove this fact. In the present analysis,
it is crucial that the critical Ising model is mapped into a weak coupling regime after a small number of
renormalization group transformations (in fact, 70 iterations for d = 4). Moreover, using a framework
essentially different from that of [16, 7], we see in the weak coupling regime that the ‘effective coupling
constant’ of a critical model decays as c1/(N + c2) after N iterations in d = 4 dimensions (exponentially
for d > 4). Our framework in the weak coupling regime is designed especially for a critical trajectory
starting at the strong coupling regime so that the criterion of convergence to the Gaussian fixed point can
be checked numerically with mathematical rigor.

Corresponding results, triviality of φ4
4 spin model on regular lattice (‘full model’), are much far harder,

and a proof of triviality of Ising model on 4 dimensional regular lattice is, though widly believed, still open.
We should here note the excellent and hard works of [9, 10] where the existence of critical trajectory in
the weak coupling regime (near Gaussian fixed point; ‘weak triviality’) is solved by rigorous block spin
renormalization group transformation.

Our main theorem is the following:

Theorem 1.1 If d ≥ 4 (i.e. c ≥
√

2), there exists a ‘critical trajectory’ converging to the Gaussian fixed
point starting from the hierarchical Ising models. Namely, there exists a positive real number sc such that
if hN , N = 0, 1, 2, · · · , are defined by (1.5) with h0 = hI,sc , then the sequence of measures hN (x) dx,
N = 0, 1, 2, · · · , converges weakly to the massless Gaussian measure hG(x) dx.

Remark. Our proof is partially computer-aided and shows for d = 4 that

sc ∈ [1.7925671170092624 , 1.7925671170092625].

In the following sections, we give a proof of Theorem 1.1. We will concentrate on the case d = 4, since the
cases d > 4 can be proved along similar lines (with weaker bounds).

2 Strategy.

The proof of Theorem 1.1 is decomposed into two parts: Theorem 2.1(analysis in the weak coupling regime)
and Theorem 2.2 (analysis in the strong coupling regime). They are stated in Section 2.3, and their proofs
are given in Section 4 and Section 5, respectively. Theorem 1.1 is proved at the end of this section assuming
them.

(1) In Theorem 2.1, we control the renormalization group flow in a weak coupling regime by means of a
finite number of truncated correlations (Taylor coefficients of logarithm of characteristic functions),
and, in terms of the truncated correlations, we give a criterion, a set of sufficient conditions, for the
measure to be in a domain of attraction of the Gaussian fixed point.

(2) In Theorem 2.2, we prove, by rigorous computer-aided calculations, that there is a trajectory whose
initial point is an Ising measure and for which the criterion in Theorem 2.1 is satisfied after a small
number of iterations.

The first part (Theorem 2.1) is essentially the Bleher-Sinai argument [1, 2, 16]. However, the criteria
introduced in the references [16, 7] seem to be difficult to handle when ‘strong coupling constants’ are
present in the model, as in the Ising models. In order to overcome this difficulty, we use characteristic
functions of single spin distributions and Newman’s inequalities for truncated correlations.

The second part (Theorem 2.2) is basically simple numerical calculations of truncated correlations up
to 8 points to ensure the criterion. The results are double checked by Mathematica and C++ programs, and
furthermore they are made mathematically rigorous by means of Newman’s inequalities.

It should be noted that rigorous computer-aided proofs are employed in [14] to Dyson’s hierarchical
model in d = 3 dimensions, to prove, with [13], an existence of a non-Gaussian fixed point. (The ‘physics’
are of course different between d = 3 and d = 4.) We also focus on a complete mathematical proof, by
combining rigorous computer-aided bounds with mathematical methods such as Newman’s inequalities and
the Bleher–Sinai arguments.
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2.1 Characteristic function.

Denote the characteristic function of the single spin distribution hN as

ĥN(ξ) = FhN (ξ) =
∫

R

e
√−1ξxhN (x) dx . (2.1)

The renormalization group transformation for ĥN is

ĥN+1 = FRF−1ĥN , (2.2)

which has a decomposition

FRF−1 = T S, (2.3)

where

Sg(ξ) = g(
√
c

2
ξ)2, (2.4)

T g(ξ) = const. exp(−β

2
�)g(ξ), (2.5)

and the constant is so defined that

T g (0) = 1 .

The transformation (2.2) has same form as the N = 2 case of the Gallavotti hierarchical model [5, 11,
12]. Note that only for N = 2 the Gallavotti model is equivalent (by Fourier transform) to the Dyson’s
hierarchical model.

We introduce a ‘potential’ VN for the characteristic function ĥN and its Taylor coefficients µn,N by

ĥN(ξ) = e−VN (ξ), (2.6)

VN (ξ) =
∞∑
n=1

µn,Nξ
n. (2.7)

(Note that ĥN (0) = 1.) The coefficient µn,N is called a truncated n point correlation. They are functions
of Ising parameter s in h0 = hI,s , but to simplify expressions, we will always suppress the dependences on
s in the following.

In particular, for the initial condition h0 = hI,s, we have

ĥ0(ξ) = ĥI,s(ξ) = FhI,s(ξ) = cos(sξ),

µ2,0 =
1
2
s2, µ4,0 =

1
12

s4, µ6,0 =
1
45

s6, µ8,0 =
17

2520
s8, etc.,

and

h1(x) = RhI,s(x) = const.
(
eβcs

2/2
{
δ(x− s

√
c) + δ(x + s

√
c)
}

+ 2δ(x)
)
,

ĥ1(ξ) =
1

1 + k
(1 + k cos(

√
csξ)), with k = eβcs

2/2,

µ2,1 = k�, µ4,1 =
k

6
(2k − 1)�2, µ6,1 =

k

90
(16k2 − 13k + 1)�3,

µ8,1 =
k

2520
(272k3 − 297k2 + 60k − 1)�4, etc., with � =

cs2

2(k + 1)
.

2.2 Newman’s inequalities.

The function VN has a remarkable positivity property and its Taylor coefficients obey Newman’s inequalities
(for a brief review of relevant part, see Appendix A):

0 ≤ µ2n,N ≤ 1
n

(2µ4,N)n/2, n = 3, 4, 5, · · · . (2.8)
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These inequalities follow from [15, Theorem 3, 6], since we have chosen the Ising spin distribution h0 = hI,s
and the function of η defined by∫

eηxhN (x)dx =
〈

exp
(
η
(√c

2

)N∑
θ

φθ

)〉
N,hI,s

(2.9)

has only pure imaginary zeros as is shown in [15, Theorem 1]. Note also that (1.2) and (1.6) imply

µ2n+1,N = 0, n = 0, 1, 2, · · · . (2.10)

The bounds (2.8) are extensively used in this paper. We here note the following facts:

(1) The right hand side of (2.7) has a nonzero radius of convergence.

(2) It suffices to prove lim
N→∞

µ4,N = 0 in order to ensure that µ2n,N , n ≥ 3, converges to zero, hence the

trajectory converges to the Gaussian fixed point.

2.3 Proof of Theorem 1.1.

Let h0 = hI,s and d = 4. Note the following simple observations on the ‘mass term’ µ2,N , which is the
variance of hN (x) dx.

(1) µ2,N is continuous in the Ising parameter s, because hN (x) dx is a result of a finite number of
renormalization group transformation (1.2).

(2) µ2,N is increasing in s, vanishes at s = 0, and diverges as s → ∞.

We then put, for N = 0, 1, 2, · · · ,

sN = inf{s > 0 | µ2,N ≥ 1}, (2.11)

sN = inf{s > 0 | µ2,N ≥ min{1 +
3√
2
µ4,N , 2 +

√
2}}. (2.12)

Obviously, we have

0 < sN ≤ sN < ∞.

Note also that

1 ≤ µ2,N ≤ 1 +
3√
2
µ4,N (2.13)

holds for s ∈ [sN , sN ]. As is seen in Section 4, (2.13) is necessary for the model to be critical. We call this
a critical mass condition.

The following theorem states our result in the weak coupling regime and is proved in Section 4.

Theorem 2.1 Let h0 = hI,s and d = 4. Assume that there exist integers N0 and N1, satisfying N0 ≤ N1,
such that, for s ∈ [sN1

, sN1 ], the bounds

0 ≤ µ4,N0 ≤ 0.0045, (2.14)
1.6µ2

4,N0
≤ µ6,N0 ≤ 6.07µ2

4,N0
, (2.15)

0 ≤ µ8,N0 ≤ 48.469µ3
4,N0

, (2.16)

and

µ2,N < 2 +
√

2, N0 ≤ N < N1 , (2.17)

hold. Then there exists an sc ∈ [sN1
, sN1 ] such that if s = sc then

lim
N→∞

µ4,N = 0,

lim
N→∞

µ2,N = 1 .

5



Remark. The original Bleher–Sinai argument takes N0 = N1 . We include the N0 < N1 case which makes
it possible to complete our proof by evaluating various quantities only at 2 endpoints of the interval in
consideration for Ising parameter s, instead of all values in the interval, as is implicit in the assumptions
of Theorem 2.1. This point will be clarified at the end of Section 5.3.

1.0
0

0.0045

N1 N1

N0 N0

s=s--N
1

s=s--N
1

s=sc

µ2

µ4

Figure 1. A schematic view of trajectories on (µ2, µ4)-plane in Theorem 2.1. Trajectories for s = sN1

and for s = sN1
(solid lines) and the critical trajectory for s = sc (broken line) are shown. The Gaussian

fixed point corresponds to the point (1.0, 0). The region defined by inequalities for (µ2, µ4) analogous to
(2.13) and (2.14) (and (2.17)) is shaded.

The following theorem states our result in the strong coupling regime and is proved in Section 5.

Theorem 2.2 The assumptions of Theorem 2.1 are satisfied for N0 = 70 and N1 = 100 , where sN1
and

sN1 satisfy

1.7925671170092624 ≤ sN1
, sN1 ≤ 1.7925671170092625 .

Proof of Theorem 1.1 for d = 4 assuming Theorem 2.1 and Theorem 2.2.
Theorem 2.1 and Theorem 2.2 imply that there exists sc ∈ [sN1

, sN1 ] such that, for s = sc, lim
N→∞

µ4,N = 0

and lim
N→∞

µ2,N = 1 hold. Then (2.6), (2.7), and (2.8) imply

lim
N→∞

ĥN (ξ) = e−ξ
2
,

uniformly in ξ on any closed interval in R. It is easy to see that e−ξ
2

is the characteristic function of the
massless Gaussian measure hG , hence Theorem 1.1 holds for d = 4.

The bounds on sN1
and sN1 in Theorem 2.2 imply

1.7925671170092624 ≤ sc ≤ 1.7925671170092625 .

�
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3 Truncated correlations.

In this section, we prepare basic (recursive) bounds on the truncated correlations that will be used in
Section 4. The renormalization group transformation is decomposed as (2.3). Since the mapping S is
simple, the essential part of our work is an analysis of T . The consequence in this section is Proposition 3.1.

3.1 Recursions.

Note first that in terms of VN the mapping S can be expressed as(
Se−VN

)
(ξ) = e

−2VN

�√
c

2 ξ
�
. (3.1)

Using (2.7), (2.10), (1.4) we also have

2VN

(√
c

2
ξ

)
=

∞∑
n=1

21−(1+2/d)nµ2n,Nξ
2n. (3.2)

Next, write (2.5) as

T g = const. gβ/2 , gt = exp(−t�)g, (3.3)

where �g(ξ) =
d2g

dξ2
(ξ), and β = 1

2 (
√

2 − 1) for d = 4. gt is a solution to

∂gt
∂t

= −�gt , g0 = g.

Hence, if we put

gt(ξ) = exp(−Vt(ξ)),

then Vt satisfies

d

dt
Vt = (∇Vt)2 −�Vt , (3.4)

where ∇Vt(ξ) =
∂Vt
∂ξ

(ξ). In other words, VN+1 is given as a solution of (3.4) at t = β/2 (modulo constant

term), with the initial condition (3.2) at t = 0.
If we write

Vt(ξ) =
∞∑
n=0

µ2n(t)ξ2n,

then (3.4) implies

d

dt
µ2n(t) = −(2n + 2)(2n + 1)µ2n+2(t) +

n∑
�=1

(2�)(2n− 2� + 2)µ2�(t)µ2n−2�+2(t). (3.5)

In particular, we have

d

dt
µ2(t) = 4µ2(t)2 − 12µ4(t), (3.6)

d

dt
µ4(t) = 16µ2(t)µ4(t) − 30µ6(t), (3.7)

d

dt
µ6(t) = 24µ2(t)µ6(t) + 16µ4(t)2 − 56µ8(t), (3.8)

d

dt
µ8(t) = 32µ2(t)µ8(t) + 48µ4(t)µ6(t) − 90µ10(t). (3.9)

Thus, µ2n,N and µ2n,N+1 are related for d = 4 by e.g.,

µ2(0) =
1√
2
µ2,N , µ4(0) =

1
4
µ4,N , µ6(0) =

1
8
√

2
µ6,N , µ8(0) =

1
32

µ8,N ,

µ2,N+1 = µ2(
β

2
), µ4,N+1 = µ4(

β

2
), µ6,N+1 = µ6(

β

2
), µ8,N+1 = µ8(

β

2
).
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3.2 Bounds.

We first note that the quantities µn(t) obey Newman’s inequalities: by comparing (2.5) and (3.3) we see
that the correspondence VN �→ V (t) is obtained by a replacement β �→ 2t in (1.2). Therefore µn(t) also is
a truncated n point correlation of a measure to which arguments in [15] apply, hence an analogue of (2.8)
holds:

0 ≤ µ2n(t) ≤ 1
n

(2µ4(t))n/2, n = 3, 4, 5, · · · . (3.10)

We have to show decay of µ4,N as N → ∞. In case d > 4, the decay follows from (3.6) and (3.7) with
d-dependent coefficients, namely, if we throw out the negative contributions −µ4(t) and −µ6(t) to the right
hand sides of (3.6) and (3.7), respectively, then we have upper bounds on µ2(t) and µ4(t). This argument
eventually yields exponential decay of µ4,N .

In case d = 4, the situation is more subtle, since the decay of µ4,N is weak, i.e., powerlike instead of
exponential. In order to derive the delicate bound on µ4(t), a lower bound for µ6(t) must be incorporated,
which in turn needs an upper bound on µ8(t). Thus, we have to deal with the equations (3.6)–(3.9). This
is the principle of our estimation.

The result is the following:

Proposition 3.1 Let d = 4 and N be a positive integer, and put

rN =
1

1 − (
√

2 − 1)(µ2,N − 1)
=

1√
2 − (

√
2 − 1)µ2,N

, (3.11)

ζN =
√

2rN − 1√
2µ2,N

=
rN
µ2,N

− 1√
2µ2,N

. (3.12)

(i) If

µ2,N < 2 +
√

2, (3.13)

then

µ2,N+1 ≤ rNµ2,N , (3.14)
µ2,N+1 ≥ rNµ2,N − 3r2

NζNµ4,N . (3.15)

(ii) If, furthermore,

µ4,N

4
≥ 15

8
√

2
ζNµ6,N +

21
4
ζ2
Nµ

2
4,N , (3.16)

µ6,N

8
√

2
+

1
2
ζNµ

2
4,N ≥ 24ζ3

Nµ
3
4,N +

123
8
√

2
ζ2
Nµ4,Nµ6,N +

7
8
ζNµ8,N , (3.17)

3
2
ζNµ4,N ≥ 12ζ3

Nµ
2
4,N +

45
8
√

2
ζ2
Nµ6,N , (3.18)

then

µ2,N+1 ≤ rNµ2,N − 3r2
N (ζNµ4,N − 8ζ3

Nµ
2
4,N − 15

4
√

2
ζ2
Nµ6,N ), (3.19)

µ4,N+1 ≥ r4
N (µ4,N − 15

2
√

2
ζNµ6,N − 21ζ2

Nµ
2
4,N ), (3.20)

µ4,N+1 ≤ r4
N (µ4,N − 15

2
√

2
ζNµ6,N − 21ζ2

Nµ
2
4,N

+
705
2
√

2
ζ3
Nµ4,Nµ6,N + 447ζ4

Nµ
3
4,N +

105
4

ζ2
Nµ8,N ), (3.21)

µ6,N+1 ≤ r6
N (

µ6,N√
2

+ 4ζNµ2
4,N ), (3.22)

µ6,N+1 ≥ r6
N (

µ6,N√
2

+ 4ζNµ2
4,N − 192ζ3

Nµ
3
4,N − 123√

2
ζ2
Nµ4,Nµ6,N − 7ζNµ8,N ), (3.23)

µ8,N+1 ≤ r8
N (

µ8,N

2
+

12√
2
ζNµ4,Nµ6,N + 24ζ2

Nµ
3
4,N). (3.24)
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The rest of this section is devoted to a proof of Proposition 3.1.

Proof. Now, observe that µ̄2(t) defined by

d

dt
µ̄2(t) = 4µ̄2(t)2, µ̄2(0) =

1√
2
µ2,N , (3.25)

is an upper bound of µ2(t):

µ2(t) ≤ µ̄2(t) =
µ2,N√

2
1

1 − 2
√

2µ2,N t
. (3.26)

This, at t =
β

2
(=

√
2 − 1
4

for d = 4) implies (3.14).
Put

M(t) =
1

1 − 2
√

2µ2,N t
,

m(t) = µ̄2(t) − µ2(t).

We have m(t) ≥ 0, and (3.13) implies that M(t) is increasing in t ∈ [0, β/2].
By a change of variable z = M(t) − 1 (dz = 2

√
2µ2,NM(t)2dt) and by putting

m̂(z) = m(t)/M(t)2, µ̂4(z) = µ4(t)/M(t)4, µ̂6(z) = µ6(t)/M(t)6, µ̂8(z) = µ8(t)/M(t)8,

we have, from (3.6) – (3.9),

µ̂4(z) =
µ4,N

4
+

1√
2µ2,N

∫ z

0

(−8m̂(z)µ̂4(z) − 15µ̂6(z))dz, (3.27)

µ̂6(z) =
µ6,N

8
√

2
+

1√
2µ2,N

∫ z

0

(8µ̂4(z)2 − 12m̂(z)µ̂6(z) − 28µ̂8(z))dz, (3.28)

µ̂8(z) =
µ8,N

32
+

1√
2µ2,N

∫ z

0

(24µ̂4(z)µ̂6(z) − 16m̂(z)µ̂8(z) − 45µ̂10(z))dz, (3.29)

m̂(z) =
1√

2µ2,N

∫ z

0

(6µ̂4(z) − 2m̂(z)2)dz, (3.30)

The equations (3.27)–(3.30) with positivity of µ2n(t) imply

µ̂4(z) ≤ µ4,N

4
, (3.31)

µ̂6(z) ≤ µ6,N

8
√

2
+

1√
2µ2,N

∫ z

0

8µ̂4(z)2dz ≤ µ6,N

8
√

2
+

µ2
4,N

2
√

2µ2,N

z, (3.32)

µ̂8(z) ≤ µ8,N

32
+

1√
2µ2,N

∫ z

0

24µ̂4(z)µ̂6(z)dz ≤ µ8,N

32
+

3
8
µ4,Nµ6,N

µ2,N
z +

3
4
µ3

4,N

µ2
2,N

z2, (3.33)

m̂(z) ≤ 1√
2µ2,N

∫ z

0

6µ̂4(z)dz ≤ 3µ4,N

2
√

2µ2,N

z. (3.34)

In particular, (3.34) at t =
β

2
(z = M(

β

2
) − 1 =

√
2rn − 1 for d = 4) implies (3.15).

Using (3.31), (3.32), (3.34) in (3.27), we have

µ̂4(z) ≥ µ4,N

4
− 15µ6,N

16µ2,N
z −

21µ2
4,N

8µ2
2,N

z2. (3.35)

Using (3.32), (3.33), (3.34), (3.35) in (3.28) and (3.30) we further have

µ̂6(z) ≥ µ6,N

8
√

2
+

µ2
4,N

2
√

2µ2,N

z −
12µ3

4,N√
2µ3

2,N

z3 − 123µ4,Nµ6,N

16
√

2µ2
2,N

z2 − 7µ8,N

8
√

2µ2,N

z, (3.36)

m̂(z) ≥ 3µ4,N

2
√

2µ2,N

z −
6µ2

4,N√
2µ3

2,N

z3 − 45µ6,N

16
√

2µ2
2,N

z2. (3.37)
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When d = 4, β =
√

2 − 1
2

and z = M(
β

2
) − 1 =

√
2rN − 1 (M(

β

2
) =

√
2rN ). Then the assumptions

(3.16) – (3.18) of Proposition 3.1 imply that the right hand sides of (3.35), (3.36), and (3.37) are non-

negative at t =
β

2
. On the other hand, they are concave in z for z ≥ 0 . Recall also that z = M(t) − 1

is increasing in t ∈ [0, β/2]. Therefore, they are non-negative for all t ∈ [0, β/2]. Using (3.35), (3.36), and
(3.37) in (3.27), we therefore have

µ̂4(z) ≤ µ4,N

4
− 1√

2µ2,N

×

×
∫ z

0

(
8

(
3µ4,N

2
√

2µ2,N

z −
6µ2

4,N√
2µ3

2,N

z3 − 45µ6,N

16
√

2µ2
2,N

z2

)(
µ4,N

4
− 15µ6,N

16µ2,N
z −

21µ2
4,N

8µ2
2,N

z2

)

+15

(
µ6,N

8
√

2
+

µ2
4,N

2
√

2µ2,N

z −
12µ3

4,N√
2µ3

2,N

z3 − 123µ4,Nµ6,N

16
√

2µ2
2,N

z2 − 7µ8,N

8
√

2µ2,N

z

))
dz

≤ µ4,N

4
− 15µ6,N

16µ2,N
z −

21µ2
4,N

8µ2
2,N

z2 +
705µ4,Nµ6,N

32µ3
2,N

z3 +
447µ3

4,N

16µ4
2,N

z4 +
105µ8,N

32µ2
2,N

z2. (3.38)

Recalling that at t = β/2 (z = M(β2 ) − 1 =
√

2rN − 1) we have

µ̄2(
β

2
) = rNµ2,N ,

µ2,N+1 = rNµ2,N − m̂(
√

2rN − 1)M(
β

2
)2,

µ4,N+1 = µ̂4(
√

2rN − 1)M(
β

2
)4,

µ6,N+1 = µ̂6(
√

2rN − 1)M(
β

2
)6,

µ8,N+1 = µ̂8(
√

2rN − 1)M(
β

2
)8,

we see that (3.37), (3.35), (3.38), (3.32), (3.36), (3.33) imply (3.19) – (3.24), respectively.
This completes a proof of Proposition 3.1. �

4 Bleher–Sinai argument.

In order to show Theorem 2.1, we confirm existence of a critical parameter s = sc by means of Bleher-
Sinai argument, and, at the same time, we derive the expected decay of µ4,N . In Bleher-Sinai argument,
monotonicity of sN and sN with respect to N is essential.

Proposition 4.1 Let d = 4 . Then the following hold.

(1) If µ2,N − 1 < 0 then µ2,N+1 < µ2,N .

(2) If
1
4
> µ2,N − 1 ≥ 3√

2
µ4,N then µ2,N+1 ≥ µ2,N .

Proof. Note that for both cases in the statement, the assumption (3.13) in Proposition 3.1 holds. Hence,
(3.14), with (3.11) and monotonicity of µ2,N , implies

µ2,N − 1 < 0 =⇒ rN < 1 =⇒ µ2,N+1 < µ2,N . (4.1)

Next we see that (3.15), with (3.11) and (3.12), implies

µ2,N − 1
µ4,N

≥ 3rN (
√

2rN − 1)
(2 −

√
2)µ2

2,N

=⇒ µ2,N+1 ≥ µ2,N . (4.2)
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Put

L1(x) =
3√

2x(
√

2 − (
√

2 − 1)x)2
.

Then by straightforward calculation we see

1 ≤ x ≤ 5
4

=⇒ L1(x) ≤ L1(1) =
3√
2
,

and (3.11) implies

L1(µ2,N ) =
3rN (

√
2rN − 1)

(2 −
√

2)µ2
2,N

.

Therefore (4.2) implies that

1
4
> µ2,N − 1 ≥ 3√

2
µ4,N =⇒ µ2,N+1 ≥ µ2,N . (4.3)

�

Corollary 4.2 Let d = 4 . Then, for the sN defined in (2.11), it holds that sN ≤ sN+1 .

Proof. Since µ2,N is increaisng in s, if s < sN then µ2,N < 1, hence Proposition 4.1 implies µ2,N+1 < µ2,N <
1 , further implying s < sN+1 . Hence the statement holds. �

For later convenience, define

r∗N =
1

1 − (
√

2 − 1)
3√
2
µ4,N

, (4.4)

ζ∗N = 1 − 1√
2
, (4.5)

ζ∗N =
√

2r∗N − 1
√

2(1 +
3√
2
µ4,N )

, (4.6)

Then we see that if (2.13) holds, then we have, from (3.11) and (3.12),

1 < rN < r∗N , (4.7)
ζ∗N < ζN < ζ∗N . (4.8)

Proposition 4.3 Let d = 4 and put

α0 = 0.0045, α1 = 1.6, α2 = 6.07, α3 = 48.469 .

Assume that there exists an integer N such that (3.13) and

(0 ≤) µ4,N ≤ α0, (4.9)
α1µ

2
4,N ≤ µ6,N ≤ α2µ

2
4,N , (4.10)

(0 ≤) µ8,N ≤ α3µ
3
4,N , (4.11)

hold. Then (3.16)–(3.18) hold, and the following also hold:

(0 ≤) µ4,N+1 ≤ µ4,N (1 − 0.08µ4,N) (≤ α0), (4.12)
α1µ

2
4,N+1 ≤ µ6,N+1 ≤ α2µ

2
4,N+1, (4.13)

(0 ≤) µ8,N+1 ≤ α3µ
3
4,N+1. (4.14)
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Proof. For x ≥ 0 put

�r(x) =
1

1 − (
√

2 − 1)
3√
2
x
,

�d(x) = 1 − 1√
2
,

�u(x) =
√

2�r(x) − 1
√

2(1 +
3√
2
x)

,

L2(x) = 1 − (
15

2
√

2
α2�u(x) + 21�u(x)2)x. (4.15)

In particular, (4.4), (4.5), (4.6) imply

r∗N = �r(µ4,N ), ζ∗N = �d(µ4,N ), ζ∗N = �u(µ4,N ).

By explicit calculation, we see that

L2(x) > 0, 0 ≤ x ≤ α0 . (4.16)

The right hand side of (3.16) is then bounded from above by

1
4
µ4,N(1 − L2(µ4,N )) ≤ 1

4
µ4,N ,

hence (3.16) holds. Similarly, (3.18) is seen to hold for 0 ≤ µ4,N ≤ α0, if we note that the right hand side
of (3.18) is bounded from above by

ζNµ
2
4,N (12ζ∗N +

45
8
√

2
ζ∗Nα2) ≤ 3

4
(1 − L2(µ4,N ))µ4,N ≤ 3

2
µ4,N .

The condition (3.17) is seen to hold with similar argument, if we note the right hand side is bounded from
above by

ζNµ
3
4,N(24ζ2

N +
123
8
√

2
ζNα2 +

7
8
α3),

while the left hand side is bounded from below by

µ2
4,N (

α1

8
√

2
+

1
2
ζN ).

Therefore, the conclusions of Proposition 3.1 hold, in particular, (3.20)–(3.24) imply

µ4,N+1 ≥ r4
Nµ4,N

(
1 − (

15
2
√

2
ζNα2 + 21ζ2

N)µ4,N

)
, (4.17)

µ4,N+1

µ4,N
≤ r4

N

(
1 − (

15
2
√

2
ζNα1 + 21ζ2

N)µ4,N + (
705
2
√

2
ζ3
Nα2 + 447ζ4

N +
105
4

ζ2
Nα3)µ2

4,N

)
, (4.18)

µ6,N+1

µ2
4,N+1

≤
(

µ4,N

µ4,N+1

)2

r6
N

(
α2√

2
+ 4ζN

)
, (4.19)

µ6,N+1

µ2
4,N+1

≥
(

µ4,N

µ4,N+1

)2

r6
N

(
α1√

2
+ 4ζN − (192ζ3

N +
123√

2
ζ2
Nα2 + 7ζNα3)µ4,N

)
, (4.20)

µ8,N+1

µ3
4,N+1

≤
(

µ4,N

µ4,N+1

)3

r8
N

(
α3

2
+

12√
2
ζNα2 + 24ζ2

N

)
. (4.21)

Rewriting (4.17), using (4.7) and (4.8), we have

µ4,N

µ4,N+1
≤ 1

r4
N

1

1 − (
15

2
√

2
ζNα2 + 21ζ2

N)µ4,N

≤ 1
L2(µ4,N )

. (4.22)
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This and (4.19) imply

µ6,N+1

µ2
4,N+1

≤

1√
2
α2 + 4�u(µ4,N )

L2(µ4,N )2
.

By explicit calculation, we see that

0 ≤ x ≤ α0 =⇒

1√
2
α2 + 4�u(x)

L2(x)2
≤ α2.

Therefore the upper bound in (4.13) holds.
In a similar way, we note that (4.21) and (4.22) imply

µ8,N+1

µ3
4,N+1

≤

1
2
α3 +

12√
2
�u(µ4,N )α2 + 24�u(µ4,N )2

L2(µ4,N )3
.

By explicit calculation, we see that

0 ≤ x ≤ α0 =⇒

1
2
α3 +

12√
2
�u(x)α2 + 24�u(x)2

L2(x)2
≤ α3.

Therefore (4.14) holds.
Similarly, from (4.20) and (4.18), we have

µ6,N+1

µ2
4,N+1

≥ 1
�r(µ4,N )2

×

α1√
2

+ 4�d(µ4,N ) − (192�u(µ4,N )3 +
123√

2
�u(µ4,N )2α2 + 7�u(µ4,N )α3)µ4,N(

1 − (
15

2
√

2
�d(µ4,N )α1 + 21�d(µ4,N )2)µ4,N + (

705
2
√

2
�u(µ4,N )3α2 + 447�u(µ4,N )4 +

105
4

�u(µ4,N )2α3)µ2
4,N

)2

≥ α1 ,

if 0 ≤ µ4,N ≤ α0 . Therefore the lower bound in (4.13) holds.
Finally, from (4.18), we have, again with similar argument,

µ4,N+1

µ4,N
≤ �r(µ4,N )4

(
1 − (

15
2
√

2
�d(µ4,N )α1 + 21�d(µ4,N )2)µ4,N

+(
705
2
√

2
�u(µ4,N )3α2 + 447�u(µ4,N )4 +

105
4

�u(µ4,N )2α3)µ2
4,N

)
≤ 1 − 0.08µ4,N ,

if 0 ≤ µ4,N ≤ α0 . Therefore (4.14) holds. �

Corollary 4.4 Let d = 4, and assume that for some N the assumptions (4.9) – (4.11) in Proposition 4.3
hold for all s satisfying sN ≤ s ≤ sN , where sN and sN are defined in (2.11) and (2.12). Then it holds
that sN+1 ≤ sN .

Proof. By (4.9), 1 +
3√
2
µ4,N < 2 +

√
2 , if sN ≤ s ≤ sN . Hence, by (2.12),

sN = inf{s > 0 | µ2,N ≥ 1 +
3√
2
µ4,N},
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and, from monotonicity of µ2,N in s, (3.13) holds if s ≤ sN .
Continuity of µ2,N and µ4,N in s imply

µ2,N = 1 +
3√
2
µ4,N , if s = sn .

(In particular, we may assume that
5
4
> µ2,N .) Hence Proposition 4.1 implies

µ2,N+1 ≥ 1 +
3√
2
µ4,N , for s = sN . (4.23)

By assumptions at s = sN , we see, from Proposition 4.3, that µ4,N+1 ≤ µ4,N , which, with (4.23),
implies

µ2,N+1 ≥ 1 +
3√
2
µ4,N+1 .

This proves sN+1 ≤ sN . �

Proof of Theorem 2.1. Note first that Corollary 4.2 implies

sN ≤ sN+1 , N = N1, N1 + 1, N1 + 2, · · · . (4.24)

With assumptions of the theorem and by induction on N , Proposition 4.3 implies that for any s satisfying
sN1

≤ s ≤ sN1 , the bounds (4.9) – (4.11) hold for N = N1 . Hence Corollary 4.4 implies sN1+1 ≤ sN1 .
Also since s ≤ sN1 implies (3.13) for N = N1, Proposition 4.3 implies that (4.9) – (4.11) hold for

N = N1 + 1 and sN1+1 ≤ s ≤ sN1+1 . We can proceed with induction on N and repeat this argument to
conclude that (4.12) – (4.14) hold for sN ≤ s ≤ sN , N = N1, N1 + 1, N1 + 2, · · · , and

sN+1 ≤ sN , N = N1, N1 + 1, N1 + 2, · · · . (4.25)

The bounds (4.24) and (4.25) imply that a sequence of closed intervals on R

[sN1
, sN1 ] ⊃ [sN1+1, sN1+1] ⊃ [sN1+2, sN1+2] ⊃ · · · ,

is contracting, hence there exists an sc, satisfying sN1
≤ sc ≤ sN1 , such that

sN ≤ sc ≤ sN , N = N1, N1 + 1, N1 + 2, · · · .

Hence, in particular, (4.12) holds for all integer N ≥ N1 at s = sc. This implies

lim
N→∞

µ4,N = 0 ,

at s = sc.
Also we see that if s = sc then (2.13) holds for all N ≥ N1 . Therefore we have

lim
N→∞

µ2,N = 1 ,

at s = sc. This completes a proof of Theorem 2.1. �

5 Strong coupling problem.

We shall prove Theorem 2.2 by (computer-aided) brute force evaluation of the Taylor coefficients of ĥN (ξ)
instead of VN (ξ).
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5.1 Taylor expansion.

Define the Taylor coefficients an,N , n ∈ Z+, of ĥN by

ĥN (ξ) =
∞∑
n=0

(−1)n
1
n!
an,Nξ

2n. (5.1)

In particular, a0,N = ĥN (0) = 1 . Note also that

an,N ≥ 0, n ∈ Z+ .

µn,N and an,N are related, e.g., as

µ2,N = a1,N , µ4,N =
a2
1,N − a2,N

2
, µ6,N =

a3
1,N

3
− a1,N a2,N

2
+

a3,N

6
,

µ8,N =
a4
1,N

4
−

a2
1,N a2,N

2
+

a2
2,N

8
+

a1,N a3,N

6
− a4,N

24
.

For Ising measure h0 = hI,s,

an,0 = (−1)n
n!

(2n)!
d2nĥ0

d ξ2n
(0) =

n!
(2n)!

∫
x2n hI,s(x)dx =

n!
(2n)!

s2n, n ∈ Z+ . (5.2)

Note that one of the Newman inequalities (see (A.6)), or the Gaussian inequalities, imply that

an,N ≤ an1,N = µn2,N , n ∈ Z+ . (5.3)

Define bn,N , n ∈ Z+, by

(SĥN )(ξ) = ĥN (
√
c

2
ξ)2 =

∞∑
n=0

(−1)n
1
n!
bn,Nξ

2n,

where S is in (2.4). Then

bn,N =
( c

4

)n n∑
�=0

(
n

�

)
a�,N an−�,N , n ∈ Z+ . (5.4)

With (5.3) we have,

bn,N ≤
(cµ2,N

2

)n
, n ∈ Z+ . (5.5)

Next define ãn,N , n ∈ Z+, by

∞∑
m=0

1
m!

(
−β

2

)m
d2m

dξ2m
SĥN (ξ) =

∞∑
n=0

(−1)n
1
n!
ãn,Nξ

2n.

Then

ãn,N =
∞∑
m=0

(
β

2

)m
bm+n,N

(2m + 2n)!n!
m!(m + n)!(2n)!

, n ∈ Z+ , (5.6)

and (2.5) implies

ĥN+1(ξ) =
1

ã0,N

∞∑
n=0

(−1)n
1
n!
ãn,Nξ

2n,

where we fixed the constant in the definition of T by ĥN+1(0) = 1 . Comparing this with (5.1) we obtain
a recursion relation in N for an,N :

an,N+1 =
ãn,N
ã0,N

, n ∈ Z+, N ∈ Z+ . (5.7)
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5.2 Truncation.

We will evaluate a finite number, say M , of an,N ’s (n = 1, 2, · · · ,M) explicitly with aid of computer
calculations, by evaluating an,N , n > M , ‘theoretically’. For this, we need to give bounds of series in (5.4)
and (5.6) in terms of sums of finite terms. The following proposition serves for this purpose.

Proposition 5.1 Let M be a positive integer, and define

bn,N , b̄n,N , n = 0, 1, 2, · · · , 2M,

and

ã n,N , ˜̄an,N , a n,N , ān,N , n = 0, 1, 2, · · · ,M,

inductively in N ∈ Z+, by

a n,0 = ān,0 =
n!

(2n)!
s2n, n = 0, 1, 2, · · · ,M,

and

bn,N =
( c

4

)n
×




n∑
�=0

(
n

�

)
a �,N a n−�,N , 0 ≤ n ≤ M,

M∑
�=n−M

(
n

�

)
a �,N a n−�,N , M < n ≤ 2M,

(5.8)

b̄n,N =




( c
4

)n n∑
�=0

(
n

�

)
ā�,N ān−�,N , 0 ≤ n ≤ M,

min



( c

4

)n ∑
n−M≤�≤M

(
n

�

)
ā�,N ān−�,N + ∆b̄n,N ,

(cā1,N

2

)n
 , M < n ≤ 2M,

(5.9)

ã n,N =
2M−n∑
m=0

(
β

2

)m
bm+n,N

(2m + 2n)!n!
m!(m + n)!(2n)!

, 0 ≤ n ≤ M, (5.10)

˜̄an,N =
2M−n∑
m=0

(
β

2

)m
b̄m+n,N

(2m + 2n)!n!
m!(m + n)!(2n)!

+ ∆ān,N , 0 ≤ n ≤ M, (5.11)

a n,N+1 =
ã n,N
˜̄a0,N

, ān,N+1 =
˜̄an,N
ã 0,N

, 1 ≤ n ≤ M, (5.12)

and

a 0,N+1 = ā0,N+1 = 1,

where we put

∆b̄n,N = 2
(c ā1,N

4

)n (
n

n−M − 1

)
× 1

1 − n−M
M+1 e

−1/(M+1)
× āM,N

aM1,N
, (5.13)

and

∆ān,N =
(

1
2β

)n (βcā1,N )2M+1

1 − 2βcā1,N

(
N

n

)
× āM,N

aM1,N
. (5.14)
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If for an integer N1 it holds that

ā1,N <
1

2βc
, 0 ≤ N ≤ N1 , (5.15)

then an,N , bn,N , ãn,N , n ∈ Z+, N ∈ Z+, defined inductively by (5.2), (5.4), (5.6), (5.7), satisfy, for all
N ≤ N1 ,

bn,N ≤ bn,N ≤ b̄n,N , n = 0, 1, 2, · · · , 2M,

ã n,N ≤ ãn,N ≤ ˜̄an,N , n = 0, 1, 2, · · · ,M,

a n,N ≤ an,N ≤ ān,N , n = 0, 1, 2, · · · ,M. (5.16)

The rest of this subsection is devoted to a proof of this proposition.

Proof. The claimed bounds on an,N in (5.16) hold for N = 0. We proceed by induction on N , and assume
that they hold for N .

By comparing (5.4) with (5.8), and noting that an,N are non-negative, we see that the lower bound for
bn,N in (5.16) holds.

Assume for a moment that the upper bound for bn,N in (5.16) also holds. Then comparing (5.6) with
(5.10), we see that the lower bound for ãn,N in (5.16) holds. If the upper bound for ãn,N also holds, then
(5.7) and (5.12) imply that the bounds for an,N+1 in (5.16) also hold.

Hence we are left with proving the upper bounds for bn,N and ãn,N in (5.16).

Upper bound on bn,N . Note first that if n ≤ M , then

bn,N =
( c

4

)n n∑
�=0

(
n

�

)
a�,N an−�,N ≤

( c
4

)n n∑
�=0

(
n

�

)
ā�,N ān−�,N = b̄n,N ,

hence bn,N ≤ b̄n,N holds. Also, (5.5) implies

bn,N ≤
(cµ2,N

2

)n
≤

(cā1,N

2

)n
,

hence it suffices to prove

bn,N ≤
( c

4

)n ∑
n−M≤�≤M

(
n

�

)
ā�,N ān−�,N + ∆b̄n,N , M < n ≤ 2M. (5.17)

To prove (5.17), first note

∆b̄n,N = bn,N −
( c

4

)n ∑
n−M≤�≤M

(
n

�

)
ā�,N ān−�,N

≤
( c

4

)n ∑
0≤�<n−M or M<�≤n

(
n

�

)
a�,N an−�,N . (5.18)

Using the Newman inequalities (A.6) we see that if � > M

a�,N ≤ aM,Na�−M,N ≤ aM,N a�−M1,N . (5.19)

Hence

∆b̄n,N ≤
( c

4

)n 
 ∑

0≤�<n−M

(
n

�

)
a�,N aM,N an−�−M1,N +

∑
M<�≤n

(
n

�

)
aM,N a�−M1,N an−�,N




≤ 2
(c a1,N

4

)n aM,N
aM1,N

n−M−1∑
�=0

(
n

�

)
, (5.20)
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where we also used (5.5). Write the summation in the right hand side as

n−M−1∑
�=0

(
n

�

)
=

(
n

n−M − 1

) [
1 +

n−M − 1
M + 2

+
n−M − 1
M + 2

n−M − 2
M + 3

+
n−M − 1
M + 2

n−M − 2
M + 3

n−M − 3
M + 4

+ · · ·
]
. (5.21)

Noting that

a− x

1 + x
≤ ae−2x, a ∈ (0, 1], x ∈ [0, 1], (5.22)

we find, by putting a =
n−M

M + 1
and ε =

1
M + 1

,

n−M − k

M + k + 1
=

a− kε

1 + kε
≤ a e−2kε. (5.23)

Hence (5.21) has a bound

n−M−1∑
�=0

(
n

�

)
≤

(
n

n−M − 1

)
×

∞∑
k=0

ak e−k(k+1)ε ≤
(

n

n−M − 1

)
× 1

1 − ae−ε
, a =

n−M

M + 1
, ε =

1
M + 1

,

which implies

∆b̄n,N ≤ ∆b̄n,N , (5.24)

where ∆b̄n,N is defined in (5.13). This proves (5.17).

Upper bound on ãn,N . Put

∆ā�,N = ã�,N −
2M−�∑
m=0

(
β

2

)m
b̄m+�,N

(2m + 2�)!�!
m!(m + �)!(2�)!

≤
∞∑

m=2M+1−�

(
β

2

)m
bm+�,N

(2m + 2�)!�!
m!(m + �)!(2�)!

=
∞∑

m=2M+1−�
(2β)m bm+�,N

(2m + 2�− 1)!!
(2m)!! (2�− 1)!!

. (5.25)

Using (5.19) and (5.5), we see that if n > 2M

bn,N =
( c

4

)n n∑
�=0

(
n

�

)
a�,N an−�,N ≤

( c
4

)n n∑
�=0

(
n

�

)
an1,N × aM,N

aM1,N
=

(c a1,N

2

)n aM,N
aM1,N

(5.26)

Therefore

∆ā�,N ≤ aM,N
aM1,N

(c a1,N

2

)� ∞∑
m=2M+1−�

(βc a1,N )m
(2m + 2�− 1)!!
(2m)!! (2�− 1)!!

≤ aM,N
aM1,N

(c a1,N

2

)� ∞∑
m=2M+1−�

(βc a1,N )m
(
m + �

�

)

=
aM,N

aM1,N

(c a1,N

2

)�
(βc a1,N )2M+1−�

∞∑
k=0

(βc a1,N )k
(

2M + 1 + k

�

)

=
aM,N
aM1,N

(
1

2β

)�
(βc a1,N )2M+1

∞∑
k=0

(βc a1,N)k
(

2M + 1 + k

�

)
. (5.27)
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Here,

T2M+1,�(r) =
∞∑
k=0

(βc a1,N )k
(

2M + 1 + k

�

)
=

∞∑
k=0

rk
(

2M + 1 + k

�

)
=

1
1 − r

�∑
m=0

(
2M + 1
�−m

)
qm,

where r = βc a1,N , and q = r
1−r . By assumption r < 1

2 . The binomial coefficient in the summand is
largest when m = 0, because 2M + 1 > 2M ≥ 2�. Therefore,

T2M+1,�(r) ≤
1

1 − r

(
2M + 1

�

) �∑
m=0

qm ≤ 1
1 − r

1
1 − q

(
2M + 1

�

)
=

1
1 − 2r

(
2M + 1

�

)
. (5.28)

This proves

∆ā�,N ≤
(

1
2β

)� (βc a1,N )2M+1

1 − 2βc a1,N

(
2M + 1

�

)
× aM,N

aM1,N
≤ ∆ā�,N , (5.29)

where ∆ā�,N is defined in (5.14). This proves ãn,N ≤ ˜̄an,N . �

Remark. We can ‘improve’ Proposition 5.1 by employing (correct) bounds, in a similar way as the term

proportional to
(cā1,N

2

)n
in (5.9). In actual calculations, we improve ān,N+1, n = 1, 2, · · · ,M , in (5.12),

the upper bounds for an,N+1’s, using (A.6) (as well as its special case (5.5)). To be more specific, we
compare ā4,N+1 in (5.12) with ā2

2,N+1 and replace the definition if the latter is smaller. Then we go on to
‘improve’ ā6,N+1 by comparing with ā2,N+1ā4,N+1, and so on. Conceptually there is nothing really new
here, but this procedure improves the actual value of the bounds in Proposition 5.1.

5.3 Computer results.

In this subsection we prove Theorem 2.2 on computers using Proposition 5.1. We double checked by
Mathematica and C++ programs on interval arithmetic. Here we will give results from C++ programs.

Our program employs interval arithmetic, which gives rigorous bounds numerically. The idea is to
express a number by a pair of ‘vector’, which consists of an array of length M of ‘digits’, taking values in
{0, 1, 2, · · · , 9}, and an integer corresponding to ‘exponent’. To give a simple example, let M = 2. One
can view that 0.0523 is expressed on the program, for example, as I1 = [5.2 × 10−2, 5.3 × 10−2], and 3
is expressed as I2 = [3.0 × 100, 3.0 × 100]. When the division I1/I2 is performed, our program routines
are so designed that they give correct bounds as an output. Namely, the computer output of I1/I2 will
be [1.7 × 10−2, 1.8 × 10−2]. We may occasionally lose the best possible bounds, but the program is so
designed that we never lose the correctness of the bounds. Thus all the outputs are rigorous bounds of the
corresponding quantities.

In actual calculation we took M = 70 digits, which turned out to be sufficient.
We also note that interval arithmetic is employed in [14] for hierarchical model in d = 3 dimensions. We

took independent approach in programming — we focused on ease in implementing the interval arithmetic
to main programs developed for standard floating point calculations — so that structure and details of the
programs are quite different. However, our numerical calculations are ‘not that heavy’ to require anything
special.

As will be explained below, we only need to consider 2 values for the initial Ising parameter s:

s− = 1.7925671170092624 , and s+ = 1.7925671170092625 .

We perform explicit recursion on computers for each s = s± using Proposition 5.1.
We summarize what is left to be proved:

(1) ā1,N <
1

2βc
, 0 ≤ s ≤ sN1 , 0 ≤ N ≤ N1 , where N1 = 100 . This condition is from (5.15), imposed

because we are going to do evaluation using Proposition 5.1. Note that this condition is stronger

than (2.17) in the assumptions in Theorem 2.2, because
1

2βc
=

1
2

(2 +
√

2) = 1.707 · · · for d = 4 .
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(2) s− ≤ sN1
and sN1 ≤ s+ . To prove this, it is sufficient (as seen from the definitions (2.11) and (2.12))

to prove

µ2,N1 < 1, when s = s− , and µ2,N1 > 1 +
3√
2
µ4,N1 , when s = s+ . (5.30)

(3) For any s satisfying s− ≤ s ≤ s+, the bounds

(0 ≤) µ4,N0 ≤ 0.0045, (5.31)
1.6µ2

4,N0
≤ µ6,N0 ≤ 6.07µ2

4,N0
, (5.32)

(0 ≤) µ8,N0 ≤ 48.469µ3
4,N0

, (5.33)

hold for N0 = 70 . This condition comes from the assumptions in Theorem 2.2 (sufficient, if s− ≤ sN1

and sN1 ≤ s+).

We now summarize our results from explicit calculations.

(1) We have ā1,N ≤ 1
2
s2
+ = 1.6066 · · · , 0 ≤ s ≤ s+, 0 ≤ N ≤ N1 . The largest value for ā1,N in the range

of parameters is actually obtained at s = s+ and N = 0 .

(2) Our calculations turned out to be accurate to obtain more than 40 digits below decimal point correctly
for µ2,100 and µ4,100 at s = s±, which is more than enough to prove (5.30). In fact, we have

0.99609586499804791366176669341357334889503943 ≤ a 1,100

≤ µ2,100 ≤ ā1,100 ≤ 0.99609586499804791366176669341357334889503972 ,
at s = s− ,

and

1.0131857903720691722396611098376636943838027 ≤ a 1,100

≤ µ2,100 ≤ ā1,100 ≤ 1.0131857903720691722396611098376636943838031 ,

0.00281027097809098768088795100753480139767915 ≤ 1
2 (−ā2,100 + a 2

1,100)
≤ µ4,100 ≤ 1

2 (−a 2,100 + ā2
1,100) ≤ 0.00281027097809098768088795100753480139767969 ,

at s = s+ .

(3) To prove (5.31) – (5.33), we note the following. Let us write the s dependences of an,N and µn,N
explicitly like an,N (s) and µn,N (s). For any integer N and for any s satisfying s− ≤ s ≤ s+, the
monotonicity of an,N(s) with respect to s implies

µ4,N (s) =
1
2

(−a2,N (s) + a1,N (s)2) ≤ 1
2

(−a2,N(s−) + a1,N (s+)2) =: µ̄4,N . (5.34)

Hence if we can prove

µ̄4,70 ≤ 0.0045,

then we have proved (5.31). In a similar way, sufficient conditions for (5.32) and (5.33) are

1.6 ≤
µ

6,70

µ̄2
4,70

,
µ̄6,70

µ2
4,70

≤ 6.07 ,
µ̄8,70

µ3
4,70

≤ 48.469 ,

with obvious definitions (as in (5.34) for µ̄4,N) for µ
n,70

and µ̄n,70 .

The bounds we have for these quantities are (we shall not waste space by writing too much digits):

µ̄4,70 ≤ 0.004144, 3.6459 ≤
µ

6,70

µ̄2
4,70

,
µ̄6,70

µ2
4,70

≤ 3.7542,
µ̄8,70

µ3
4,70

≤ 38.488.

This completes a proof of Theorem 2.2, and therefore Theorem 1.1 is proved.
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A Newman’s inequalities.

Let X be a stochastic variable which is in class L of [15]. X ∈ L has Lee-Yang property, which states
that the zeros of the moment generating function E

[
eHX

]
are pure imaginary. In fact, it is shown in [15,

Proposition 2] using Hadamard’s Theorem that E
[
eHX

]
has a following expression:

E
[
eHX

]
= ebH

2 ∏
j

(
1 +

H2

α2
j

)
, (A.1)

where b is a non-negative constant and αj , j = 1, 2, 3, · · · , is a positive nondecreasing sequence satisfying
∞∑
j=1

α−2
j < ∞.

Consequences of (A.1) in terms of inequalities among moments (n point functions) are given in [15],
among which we note the following.

1. Positivity [15, Theorem 3]. Put

µ2n = − 1
(2n)!

d2n

dξ2n
log E

[
e
√−1ξX

]∣∣∣∣
ξ=0

. (A.2)

Then,

µ2n ≥ 0, n = 0, 1, 2, · · · . (A.3)

(Note that (A.1) implies µ2n+1 = 0 .)

2. Newman’s bound [15, Theorem 6]. Put v2n = nµ2n. Then,

v4n ≤ vn4 , v6 ≤ √
v4v8, v4n+2 ≤ v6 v

n−1
4 , (A.4)

where the first and third inequalities follow from (2.10) of [15], while the second one is (2.12) of [15].
These imply v2n ≤ v

n/2
4 , n ≥ 2, and therefore

µ2n ≤ (2µ4)n/2

n
, n = 2, 3, 4, · · · . (A.5)

Furthermore, we will prove the following.

Proposition A.1 Put aN =
N !

(2N)!
E
[
X2N

]
, N ∈ Z+. Then,

aM+N ≤ aM aN N,M = 0, 1, 2, · · · . (A.6)

Proof. Put yj = α−2
j > 0 . Then

E
[
eHX

]
= ebH

2 ∏
j

(
1 + H2 yj

)
. (A.7)

Expand the infinite product to obtain

∏
j

(
1 + H2 yj

)
= 1 + H2

∑
j

yj +
H4

2!

∑
i,j

′yiyj +
H6

3!

∑
i,j,k

′yiyjyk + ... =
∞∑
n=0

H2n

n!
cn, (A.8)
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with

cn =
∑

i1,i2,...,in

′yi1yi2yi3 ...yin , (A.9)

where primed summations denote summations over non-coinciding indices. Hence we have,

E
[
eHX

]
=

∞∑
N=0

H2N
∑

m,n:m+n=N

bm

m!
cn
n!

=
∞∑
N=0

H2N
N∑
n=0

bN−n

(N − n)!
cn
n!

. (A.10)

Comparing with E
[
eHX

]
=

∞∑
N=0

aN
N !

H2N , we obtain

aN =
N∑
n=0

(
N

n

)
bN−ncn .

Note that (A.9) implies

cn+m ≤ cmcn , (A.11)

because the conditions of primed summations are weaker for the left hand side. This with b ≥ 0 implies

aM aN =
M∑
m=0

N∑
n=0

(
M

m

)(
N

n

)
bM+N−m−n cm cn

≥
M∑
m=0

N∑
n=0

(
M

m

)(
N

n

)
bM+N−m−n cm+n

=
M+N∑
�=0

bM+N−� c�
�∑

m : 0 ≤ m ≤ M,
0 ≤ �−m ≤ N

(
M

m

)(
N

�−m

)

=
M+N∑
�=0

bM+N−� c�

(
M + N

�

)
= aM+N ,

where, in the last line, we also used

�∑
m : 0 ≤ m ≤ M ,
0 ≤ �−m ≤ N

(
M

m

)(
N

�−m

)
=

(
M + N

�

)
, (A.12)

which is seen to hold if we compare the coefficients of x� of an identity (1 +x)M+N = (1 +x)M (1 +x)N . �
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