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1 Introduction and main results.

1.1 Self-avoiding walk on the Sierpiński gasket.

Self-avoiding walks on hypercubic lattices Zn have been studied mathematically for half a century, but
compared to random walks (and diffusion processes, their continuum limits), amazingly little is known
[11].
For random walks, nice properties such as Markov properties enabled deep and accurate studies, many

of which are effective for spaces with any dimension n. On the other hand, self-avoiding walks seem to
have little such strong general methods. In fact, their behaviors are expected to vary drastically with the
dimension n for small n, so that effective methods possibly vary for different spaces.
Turning our attention to the 2- and 3-dimensional Sierpiński gaskets, there are works on the restricted

self-avoiding walks (a subset of self-avoiding walks, to be defined in Section 3.1) in [1], and mathematically
rigorous studies for the full self-avoiding walk (including a proof that the restriced self-avoiding walk of
[1] are in the same universality classes with the full self-avoiding walk), with further precise asymptotic
results, exist for both the 2-dimensional Sierpiński gasket [5, 4, 7] and the 3-dimensional Sierpiński gasket
(4-simplex lattice) [6].
In the direction of generalization to d-dimensional Sierpiński gaskets, there is a work [9] on the restricted

model for d = 4, 5, following the lines of [1] with a propsal of an approximation method for general d. (d-
dimensional Sierpiński gasket is the d + 1-simplex lattice in [9].) However, studies in the direction of
extending the rigorous renormalization group analysis to d-dimensional cases have not appeared, to the
authors’ knowledge.
A main object of this paper to propose a general and mathematically rigorous renormalization group

formulation of the self-avoiding walks on dSG for all d, from which one can derive asymptotic behaviors.
As an application we prove asymptotic behaviors, such as the exponent for mean square displacement,
of the restricted model of self-avoiding walks on 4SG. (The restricted model considers those self-avoiding
walks which does not take 2 or more steps in row in each unit simplices (Section 3.1).)
We emphasize that a rigorous renormalization group analysis is non-trivial for the self-avoiding walks

on dSG. Though it is easy to write down the renormalization group recursion equations for small d, it is of
course another thing to analyze their trajectories rigorously. (Rigorous analysis of renormalization group
trajectories and rigorous proofs of their implications on asymptotic behaviors of self-avoiding walks seem
to have been ignored in the physics literature.)
It is not because the life is simple on gaskets that the gaskets are appealing, but because (as we will show

in this paper) we can formulate and prove with mathematical rigor that an appropriate renormalization
group formulation contains full imformation of asymptotic behaviors of self-avoiding walks. Since the
renormalization group analysis contains full information on asymptotic behaviors, the authors think that
it is too important not to analyze them with mathematical rigor and in generality (as we do in this paper).

1.2 Renormalization group approach.

General ‘philosophy’ of the renormalization group (RG) in physics (and the previous rigorous studies on
2SG and 3SG) suggest that a RG approach to the asymptotic behaviors of the self-avoiding paths on dSG
starts with splitting the analysis into two parts:

(i) Formulate the RG, a dynamical system on a ‘natural’ parameter space, and then derive nice properties
about the fixed points and the trajectories of the RG flows, such as uniqueness of certain fixed point
and convergence of critical trajectories.

(ii) Derive asymptotic behaviors of the self-avoiding paths from the properties of RG flows.

The RG is a dynamical system determined by a recursion map �Φ, which will be defined in (10), on a
finite dimensional Eulidean space (the parameter space R

Id defined in (3)). For general case of physical
interest, we should consider infinite dimensional parameter space, but the so called finite ramifiedness of
dSG implies that the RG in the present study is finite dimensional. The RG map is a response in the
parameter space to the ‘scale transformation’ (smoothing out or putting in finer structures to the paths)
on the space of paths. (The transformation suitable for paths on dSG is a decimation, which will be implicit
in the proof of Proposition 4.)
The quantities we need to extract from the RG map �Φ are the following.

(i) The largest eigenvalue λ of the differential map of �Φ at a self-avoiding fixed point �xc .

2



(ii) The critical point βc, which is the intersection point of the critical surface (the set of points from
which the trajectories of RG converge to the self-avoiding fixed point �xc) and the canonical curve
(the curve defined by (17)).

We give the precise definitions of λ and βc and also the assumptions on the RG map �Φ at (FP1) – (FP4)
and (CS1) in Section 3.1. (To state them rigorously, we need to prepare technically cumbersome definitions
in Section 2 starting from the definition of dSG.)
In this paper we will prove the following. Fix d � 2. For each k ∈ Z+, let N(k) be the number of k

step self-avoiding paths on dSG starting from the origin O, and let Ek[·] be the expectation with respect
to the uniform distribution (averaging with equal weight) on such paths.

Theorem 1 (Theorem 10 and Theorem 11) If there exists a critical point βc then

(i) lim
k→∞

1
k
logN(k) = βc .

(ii) lim
k→∞

1
log k

logEk[|w(k)|s dw ] = s, s � 0, where | · | denotes the Euclidean length and dw =
log λ
log 2

.

The first result says that the connectivity constant of the self-avoiding paths on dSG is eβc . The second
result says that the exponent for mean square displacement is 1/dw, which indicates that a typical k step
self-avoiding path w deviates from the starting point by |w(k)| ∼ k1/dw . (Since Theorem 11 holds for all
s � 0, we have the exponent for all the moments as well as that for the mean square displacement, but we
will keep the good old terminology in this paper.) We will prove an additional statement on the correction
to the ‘leading terms’ N(k) ∼ eβck and |w(k)| ∼ k1/dw . See Theorem 10 and Theorem 11 for details.
Possibly the notions such as fixed points and critical points are not new from the view point of philosophy

of RG. What is new here is that we propose a mathematically well-defined formulation (Section 3.1) which
are sufficient (Section 3.2) to prove asymptotic behaviors of self-avoiding walks on dSG with all d, giving
a mathematical evidence that the dynamics of RG contains information on the asymptotic behaviors of
stochastic processes.
As an application of the formulation, we prove in Section 5 that the assumptions on the RG map in

Section 3.1 are satisfied for the restricted model of self-avoiding paths on 4SG.

Theorem 2 (Theorem 31 and Theorem 33) The self-avoiding fixed point �xc and the critical point
βc,res of the restricted model on the 4 dimensional pre-Sierpiński gasket (4SG) exists.

In particular, the number Nres(k) of restricted self-avoiding paths of length k starting from 0 satisfies

lim
k→∞

1
k
logNres(k) = βc,res .

and the exponent for mean square displacement for the restricted model is dw =
log λ
log 2

= 1.6657696 · · ·, in
the sense that

lim
k→∞

1
log k

logEres,k[|w(k)|s dw ] = s, s � 0,

where Eres,k is the expectation with respect to the probability measure with equal weight on length k restricted
self-avoiding paths starting at O.

Acknowledgements. T. Hattori thanks Prof. S. Kusuoka and Prof. K. Hattori for collaborations,
and Prof. T. Hara for encouragements. The authors thank the members in Department of Mathematics,
Rikkyo Univeristy, where part of this work was done, and the referee of a journal for detailed check of the
proofs.
The research of T. Hattori is supported in part by a Grant-in-Aid for Scientific Research (C) from the

Ministry of Education, Culture, Sports, Science and Technology.

2 Renormalization group.

2.1 Self-avoiding paths on the d-dimensional pre-Sierpiński gasket.

Let d � 2 be an integer. We define a d-dimensional pre-Sierpiński gasket (pre-dSG) as follows. Consider a
d-simplex of a unit side length embedded in Rd, and let G0 = {v0, v1, v2, · · · , vd} be the set of vertices of
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the d-simplex, where v0 = O = (0, 0, · · · , 0) is the origin of Rd. (We may occasionally also write v0,i = vi ,
i = 1, · · · , d.) Let B0 = {(vi, vj) | 0 � i < j � d} be the set of non-ordered pairs of vertices, and we denote
the pair (G0, B0) by F0 .
We define a sequence Fn = (Gn, Bn) , n = 1, 2, 3, · · ·, of finite pre-dSG inductively by

Gn+1 =
d⋃
i=0

(Gn + 2nvi), Bn+1 =
d⋃
i=0

(Bn + 2nvi), n = 1, 2, 3, · · · , (1)

where we write A+ v = {x+ v | x ∈ A} for a set A and a point v.
Fn is a d-simplex of side length 2n, composed of d+ 1 copies of Fn−1, with d+ 1 outmost points being

vn,0 = O and vn,i = 2nvi , i = 1, 2, 3, · · · , d. Gn is a collection of vertices in the copies of Gn−1, and Bn is
a collection of bonds in the copies of Bn−1 .
We call

F = (G,B); G =
∞⋃
n=0

Gn , B =
∞⋃
n=0

Bn , (2)

the d-dimensional pre-Sierpiński gasket (pre-dSG). We identify (v, v′) ∈ B with line segments vv′ whenever
it would be natural to do so.
Denote the set of non-negative integers by Z+, and for w : Z+ → G, denote by L(w) ∈ Z+ ∪{∞} (‘the

length of w’) the smallest integer satisfying

w(i) = w(L(w)), i � L(w).

Define the set of self-avoiding paths W0 to be the set of maps w : Z+ → G, such that

w(i1) 
= w(i2), 0 � i1 < i2 � L(w),
|w(i) − w(i+ 1)| = 1, 0 � i � L(w)− 1,
w(i)w(i + 1) ∈ B, 0 � i � L(w)− 1 .

2.2 Overview of technical definitions.

We need to prepare several basic definitions in Section 2.3, Section 2.4, and Section 2.5 before introducing
the main notions in Section 3.1. Here we will briefly explain the basic definitions.

Section 2.3. We first classify how a self-avoiding path intersects a unit d-simplex. A path which enters a
simplex moves within the simplex for at most d steps (because it may not hit the same vertex twice).
If a path takes i1 steps in the simplex and goes into an adjacent one, and never returns to the simplex,
we label the intersection of the path and the simplex by the index (i1, 0, · · · , 0). Alternatively, the
path may return to the simplex a number of times, and for each return the intersection may be
labelled by how many steps the path takes in the simplex. Thus if a path spends 3 steps for the first
intersection and 1 step for the second intersection with a simplex, then we label the intersection by
the index (1, 3, 0, · · · , 0). (For our purpose we may identify (1, 3, 0, · · · , 0) and (3, 1, 0, · · · , 0); we are
free to rearrange a sequence in an index in the ascending order.) We denote the set of the indices by
Id.
Each index corresponds to a component in the parameter space on which the RG map acts. Therefore
for each index I ∈ Id, we need a set of self-avoiding paths W (n)

I on Gn labelled by I which has a
similar structure as the intersection of a path and a unit simplex labelled by I. For an index with
more than one non-zero entries, such as I = (1, 3, 0, · · · , 0), the set W (n)

I is defined to be a set of
collection of self- and mutually-avoiding paths on Gn. For example, W

(n)
(1,3,0,···,0) is a set of disjoint

pairs of self-avoiding paths on Gn, such that one path starts and ends at outmost vertices of Gn,
but hits no other outmost vertices, while the other path hits two outmost vertices other than the
endpoints.

Section 2.4. The RG in our study is the recursion map in n of the joint generating functions �Xn =
(Xn,I(�x), I ∈ Id) of sJ , J ∈ Id, forW (n)

I , where sJ is the number of unit simplices whose intersection
with the path is of type J .

A similarity of finite gaskets Gn among different ns implies a recursion relation to hold for all n, and
this is our RG. In this way we arrive at a mathematically well-defined notion of ‘a response in the
parameter space of the scale transformation in the path space’.

4



Section 2.5. A study in 3SG shows [6] that in general there are more than one non-trivial fixed points
of the RG. Therefore we have to know which fixed point is relevant for the asymptotic behavior of
the self-avoiding paths. It turns out that the condition that the fixed point is in a certain invariant
set of the RG ensures our proof to work. To formulate the condition (see (FP4)), we introduce the
invariant set Ξd.

We note that it would also be useful for intuitive understanding to look at the case of 3SG, which is
explicitly given in [6],

2.3 Classification of self-avoiding paths.

Denote by Tb the family of all the translations of B0 that are subsets of B. Namely, Tb contains all the
unit d-simplices which compose the pre-dSG. (with each simplex regarded as a collection of bonds). Put

Id = {(i1, i2, · · · , ik) ∈ Z
k
+ | k = 1, 2, 3, · · · , 0 < i1 � i2 � · · · � ik ,

i1 + i2 + · · ·+ ik + k � d+ 1}, (3)

and denote the number of elements of Id by fd = !Id.
Proposition 3 Let w ∈ W0 and ∆ ∈ Tb , and consider the set of bonds

A = {w(i)w(i+ 1) ∈ ∆ | i = 0, 1, 2, · · · , L(w)}.

If A is not empty, then there exists I = (i1, i2, · · · , ik) ∈ Id such that A is congruent to

∆I = {Ov1v2 · · · vi1−1vi1 , vi1+1 · · · vi1+i2 , · · · , vi1+···ik−1+1 · · · vi1+···ik}, (4)

where we used an abbreviation such as

Ov1v2 · · · vi1−1vi1 = Ov1, v1v2, v2v3, · · · , vi1−1vi1 .

Example. • I2 = {(1), (2)}: A 
= ∅ is congruent to either {Ov1} or {Ov1v2}.

• I3 = {(1), (2), (3), (1, 1)}: There is a possibility that a path enters a unit tetrahedron twice, as
{Ov1, v2v3}.

• I4 = {(1), (2), (3), (4), (1, 1), (1, 2)}.
Correspondingly, f2 = 2, f3 = 4, f4 = 6. ✸

Proof of Proposition 3. If A 
= ∅, namely, if the path w enters the unit d-simplex specified by ∆, then A is
composed of one or more connected clusters. That is, w may pass through ∆ and may come back and reenter
∆. Since w is self-avoiding, the second passage does not intersect with the first one. Thus we can classify
A by the size of the connected segments. One may rearrange the segments in an increasing order of size,
hence each class is determined by an increasing finite sequence of positive integers, i1 � i2 � i3 � · · · � ik
for some k � 1 . The meaning of the conditions in the definition of Id should now be obvious. Since ∆ is
a translation of B0 which is the set of bonds in the unit d-simplex Ov1v2 · · · vd , the statement follows. ✷

In analogy with Proposition 3 we can classify the set of self-avoiding paths on Fn by Id , and also
generalize to two or more self-avoiding paths.
For n ∈ Z+ and u, v ∈ Gn, define W (n,u,v) by

W (n,u,v) = {w ∈ W0 | w(0) = u, w(L(w)) = v, w(i) ∈ Gn , i ∈ Z+}.

For n ∈ Z+ and I = (i1, i2, · · · , ik) ∈ Id, define W (n)
I by

W
(n)
I = {(w1, w2, · · · , wk) ∈ W (n,O,vn,i1) ×W (n,vn,i1+1,vn,i1+i2+1) ×W (n,vn,i1+i2+2,vn,i1+i2+i3+2)

× · · · ×W (n,vn,i1+i2+···+ik−1+k−1,vn,i1+i2+···+ik+k−1) |
if i 
= j then wi and wj do not hit common points, and for each j

wj hits points vn,i1+i2+···+ij−1+j−1, vn,i1+i2+···+ij−1+j , vn,i1+i2+···+ij−1+j+1,

· · · vn,i1+i2+···+ij−1+ij+j−1, in this order,
but hits no other points in {vn,� | # = 0, 1, 2, · · · , d}}.

(5)

Obviously, k is equal to the number of path segments that form an element in W
(n)
I .
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Example. For d = 4, there are f4 = 6 types of sets W
(n)
I , which are

{(1)}: Set of paths from O to vn,1 which do not hit vn,2, vn,3, vn,4 .

{(2)}: Set of paths from O to vn,2 passing through vn,1 which do not hit vn,3, vn,4 .

{(3)}: Set of paths from O to vn,3 passing through vn,1 and vn,2 in this order and avoiding vn,4 .

{(4)}: Set of paths from O to vn,4 passing through vn,1, vn,2, and vn,3 in this order.

{(1, 1)}: Set of pair of (self- and mutually-avoiding) paths, one from O to vn,1 and the other from vn,2 to
vn,3 neither hitting vn,4 .

{(1, 2)}: Set of pair of paths, one from O to vn,1 and the other from vn,2 to vn,4 via vn,3 .

✸

For w ∈
⋃
n∈Z+

⋃
I∈Id

W
(n)
I denote by ŵ the set of bonds which w passes. Namely, for n ∈ Z+ and

I = (i1, i2, · · · , ik) ∈ Id , and for w = (w1, w2, · · · , wk) ∈ W
(n)
I ,

ŵ = {wj(i)wj(i+ 1) ∈ B | i = 0, 1, 2, · · · , L(wj)− 1, j = 1, 2, · · · , k}.

Also define SI(w), I ∈ Id, by,

SI(w) = {∆ ∈ Tb | ŵ ∩∆ is congruent to ∆I of (4)}, (6)

and denote by sI(w) = !SI(w), the cardinality of SI(w). sI(w) is the number of unit d-simplices in F such
that the trajectory of the path (or the paths) w is congruent to ∆I . It is a generalized notion of the length
of the path in the sense that

k∑
i=1

L(wi) =
∑
J∈Id

|J |sJ (w), w = (w1, w2, · · · , wk) ∈ W
(n)
I , I = (i1, · · · , ik) ∈ Id , n ∈ Z+, (7)

where, for J ∈ Id we define |J |, the length of J , by

|J | = j1 + · · ·+ j� , if J = (j1, · · · , j�). (8)

2.4 Parameter space and the renormalization group.

Assumptions of the main results are stated in terms of the flows of the associated renormalization group
(RG), which is a map (discrete-time dynamical system) in a parameter space of variables in the generating
function of generalized path length (sJ , J ∈ Id). The dynamical system is derived as the response in the
parameter space to the change in n. A graphical property of dSG called finite ramifideness implies that
the RG is a finite dimensional dynamical system.
Define the generating function

�Xn = (Xn,I , I ∈ Id) : C
Id → C

Id

of (sJ , J ∈ Id) for a family of paths sets (W (n)
I , I ∈ Id), by,

Xn,I(�x) =
∑

w∈W (n)
I

∏
J∈Id

x
sJ (w)
J , �x = (xJ , J ∈ Id) ∈ C

Id , n = 0, 1, 2, · · · . (9)

The right hand side is a finite summation, so Xn,I is defined on C
Id .

The starting point of our analysis is the following.

Proposition 4 �Xn = (Xn,I , I ∈ Id), n = 0, 1, 2, · · ·, satisfy the following recursion relations.

�X0(�x) = �x, �x ∈ C
Id ,
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and
�Xn+1 = �Φ ◦ �Xn , (10)

where
�Φ = (ΦI , I ∈ Id) = �X1 ,

is a fd dimensional vector valued function whose components are polynomials in fd variables with positive
integer coefficients. In particular, R

Id
+ is an invariant set of �Φ.

The degree of each term in the polynomials are no less than 2 and no greater than d + 1, and Φ(1)

contains terms x(1)
2 and x(1)

d+1 .

Proof. Let n ∈ Z+. F1 is composed of d + 1 d-simplices congruent to F0 . Similarly, Fn+1 is composed of
d+ 1 d-simplices Fn . The similarity of the two compositions leads to a natural map

π : W
(n+1)
I → W

(1)
I , I ∈ Id.

For each Xn+1,I , classify the summation in the right hand side of (9) (with n + 1 in place of n) by
π(w) ∈ W

(1)
I to find

Xn+1,I(�x) =
∑

w∈W (n+1)
I

∏
J∈Id

x
sJ (w)
J =

∑
w′∈W (1)

I

∑
w∈W (n+1)

I ; π(w)=w′

∏
J∈Id

x
sJ (w)
J

=
∑

w′∈W (1)
I

∏
I′∈Id


 ∑
w′′∈W (n)

I′

∏
J∈Id

x
sJ (w′′)
J



sI′ (w

′)

=
∑

w′∈W (1)
I

∏
I′∈Id

(Xn,I′(�x))sI′ (w
′) = X1,I( �Xn(�x)).

By definition (9), each term in ΦI = X1,I has a form
∏
J∈Id

x
sJ (w)
J , hence its degree

∑
J∈Id

sJ(w) is, by

definition (6), the number of unit simplices in F1 that a path w passes through. This is bounded from
above by the total number of unit simplices in F1, which is d + 1, and from below by 2, because any two
extreme (outmost) vertices of F1 is apart by length 2.
Positivity of coefficients of X1,I are obvious. Existence of terms x2

(1) and xd+1
(1) in Φ(1) = X1,(1) follows

from the paths Ov0,1v1,1 and Ov0,d(v0,d + v0,d−1)(v0,d−1 + v0,d−2) · · · (v0,2 + v0,1)v1,1 in W
(1)
(1) . ✷

Large n means that the endpoints of the paths are far apart, hence it corresponds to large path length
L. Intuitively speaking Proposition 4 therefore gives a response to the change in the length scale of the
system in consideration, the sets of self-avoiding paths, in terms of the parameter space of variables in
the generating functions of sI , the generalized path length. Global properties of the trajectories of the
map �Φ therefore is expected to give (and we will show that it does) large length asymptotic behaviors of
self-avoiding paths on dSG.
In analogy to the (mathematically misleading) terminology in physics literature, we call the discrete-

time dynamical system on R
Id
+ defined by the map �Φ, the renormalization group (RG).

2.5 Invariant sets.

If there is a subset of R
Id
+ which is an invariant set of the RG map �Φ, then the recursion (10) is naturally

regarded as a recursion equation on the subset.
For I = (i1, · · · , ik) and J = (j1, · · · , j�) in Id , denote by I⊕J the rearrangement of i1, · · · , ik, j1, · · · , j�

in non-decreasing order, and define Ξd ⊂ R
Id
+ by

Ξd = {�x ∈ R
Id
+ | xI⊕J � xIxJ for all I, J ∈ Id such that I ⊕ J ∈ Id}. (11)

Example. Ξ3 = {�x ∈ R
I3
+ | x(11) � x2

(1)} , Ξ4 = {�x ∈ R
I4
+ | x(11) � x2

(1), x(12) � x(1)x(2)} . ✸

Proposition 5 Ξd is an invariant set of �Φ.
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Proof. Let I, J, I ⊕ J ∈ Id . Note that there is a natural one-to-one into map W
(1)
I⊕J → W

(1)
I ×W

(1)
J . For

w ∈ W
(1)
I⊕J , let (w1, w2) ∈ W

(1)
I ×W

(1)
J be the corresponding pair. Then, for each ∆ ∈ Tb , ŵ ∩∆ may be

regarded as a composition of ŵ1∩∆ and ŵ2∩∆, hence if ŵ∩∆ is congruent to ∆K of (4) for some K ∈ Id ,
then there exists K1,K2 ∈ Id (allowing an emptyset) such that K = K1 ⊕ K2 and such that ŵi ∩ ∆,
i = 1, 2, is congruent to ∆Ki , i = 1, 2, respectively. Note also that �x ∈ Ξd implies xK1⊕K2 � xK1xK2 .
Therefore by definition (Proposition 4 and (9)),

ΦI⊕J(�x) =
∑

w∈W (1)
I⊕J

∏
K∈Id

xK
sK(w) �

∑
w1∈W (1)

I

∑
w2∈W (1)

J

∏
K1∈Id

xK1
sK1 (w1)

∏
K2∈Id

xK2
sK2 (w2) = ΦI(�x)ΦJ(�x).

✷

In the following, for K ⊂ Id , we use a (somewhat irregular) notation

R
K
+ = {�x ∈ R

Id
+ | xJ = 0, J 
∈ K} ⊂ R

Id
+ . (12)

We also write C
K ⊂ C

Id , Z
K
+ ⊂ Z

Id
+ , etc.

Define
Kres = {(1), (11), · · · , (1 · · · 1)}. (13)

The indices in Kres correspond to those paths which go out of a simplex after single step passage each time
they enter the simplex.

Proposition 6 R
Kres
+ is an invariant subset of �Φ.

Proof. This is proved by generalizing the arguments in the proof of [6, Proposition 2.1 (4)(5)]. ✷

3 Main results.

3.1 Fixed point and critical trajectory.

Based on experiences with dSG for d = 2, 3, 4, we define notions which are relevant for asymptotic behaviors
of self-avoiding paths on dSG.
Denote the Jacobi matrix of �Φ in Proposition 4 by J = (JIJ):

JIJ(�x) =
∂ΦI
∂xJ

(�x), I, J ∈ Id , �x ∈ C
Id . (14)

We say that �xc ∈ R
Id
+ is a self-avoiding fixed point , if the following hold.

(FP1) �Φ(�xc) = �xc .

(FP2) J (�xc) in (14) is diagonalizable by an invertible matrix. The eigenvalue λ which is largest in absolute
value satisfies λ > 1 with multiplicity 1, and all the other eigenvalues have absolute values strictly
less than 1 .

Denote by �vL = (vL,I , I ∈ Id) a left eigenvector of J (�xc) corresponding to λ;∑
I∈Id

vL,IJIJ (�xc) = λvL,J , J ∈ Id ,

which we chose to have non-negative components (possible, thanks to Frobenius’ theorem). Then
vL,J > 0, J ∈ Id .
Similarly, denote by �vR a right eigenvector corresponding to λ with non-negative components;∑

J∈Id

JIJ (�xc)vR,J = λvR,I , I ∈ Id .

Then vR,(1) > 0 .
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(FP3) For all I ∈ Id such that xc,I 
= 0, there exists m ∈ Z
Id
+ , satisfying m(1) > 0 and mJ = 0 if xc,J = 0,

such that there is a term
∏
J∈Id

xJ
mJ in ΦI .

(FP4) �xc ∈ Ξd \ {�0}.

Assume that there exists a self-avoiding fixed point �xc . We say that �x ∈ R
Id
+ is in the domain of

attraction of �xc, if the following hold.

(DA1) lim
n→∞

�Xn(�x) = �xc .

(DA2) If xc,I 
= 0 then xI 
= 0 .

We denote by Dom(�xc) the set of �x ∈ R
Id
+ which are in the domain of attraction of �xc .

Example. If �xc is a self-avoiding fixed point, then �xc ∈ Dom(�xc), i.e., a self-avoiding fixed point satisfies
(DA1) – (DA2).

✸

Let K ⊂ Id . Instead of (5), we may consider a set of walks W (n)
K,I by restricting to those paths in W

(n)
I

which satisfy sJ(w) = 0 if J 
∈ K:

W
(n)
K,I = {w ∈ W

(n)
I | sJ(w) = 0, J 
∈ K}. (15)

If K = Id , then we are dealing with the original (full) model; W (n)
Id ,I

=W
(n)
I . We define the corresponding

generating functions by

XK,n,I(�x) =
∑

w∈W (n)
K,I

∏
J∈K

x
sJ (w)
J , �x = (xJ , J ∈ K) ∈ C

K, n = 0, 1, 2, · · · , I ∈ Id . (16)

If RK
+ is an invariant subset of R

Id
+ , then �XK,n satisfy (10), with a convention that the components

corresponding to J 
∈ K are 0 .
For K ⊂ Id and β ∈ R, define �xcan,K(β) = (xcan,K,I (β), I ∈ Id) by

xcan,K,I (β) =
{

e−β|I|, I ∈ K,
0, I 
∈ K,

(17)

where |I| is defined in (8). Following the notions in statistical mechanics, the partition function for a set
of self-avoiding paths specified by K is defined by �ZK,n = (ZK,n,I , I ∈ Id), with

ZK,n,I(β) =
∑

w∈W (n)
K,I

e−βL(w), β ∈ R, n = 0, 1, 2, · · · . (18)

With (7), we see that
ZK,n,I(β) = XK,n,I(�xcan,K(β)). (19)

In view of this relation, we will occasionally refer to the curve in the parameter space R
Id defined by (17)

as the ‘canonical curve’.
If K = Id we also use an abbreviation �xcan(β) = �xcan,Id

(β) and �Zn(β) = �ZId ,n(β). Hence

Zn,I(β) = Xn,I(�xcan(β)) =
∑

w∈W (n)
I

e−βL(w), β ∈ R, n = 0, 1, 2, · · · . (20)

In the following, the set of paths in (15) with K = Kres will be called the restricted self-avoiding paths,
the corresponding generating function (16), the generating function for the restricted model, and so on.
We need the following additional definitions for Theorem 10.

(CS1) We say that βc ∈ R is a critical point of the full model if �xcan(βc) ∈ Dom(�xc) for a self-avoiding fixed
point �xc .
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(CS2) We say that βc,res ∈ R is a critical point of the restricted model if �xcan,Kres(βc,res) ∈ Dom(�xc) for a
self-avoiding fixed point �xc .

Note that by definition (11),

�xcan(βc) ∈ Ξd , and �xcan,Kres(βc,res) ∈ Ξd . (21)

Remark. (i) The boundary ∂D of the set D ⊂ Ξd defined in (31) is a bounded closed non-empty �Φ–
invariant subset of RId (which are easy consequences of Theorem 15). Hence, the fixed point theorem
implies that there exists a fixed point of �Φ which satisfies (FP1) and (FP4).

The other conditions on the self-avoiding fixed point (FP2) and (FP3) depend more on the details of
the self-avoiding paths on dSG. However, these conditions deal with conditions of Perron-Frobenius
type and irreducibility, which are ‘soft’ conditions, hence we expect them to hold. (These condi-
tions are used in the proofs of Proposition 12, Proposition 14, Proposition 17, Proposition 20, and
Lemma 22.)

(ii) What may be more difficult is the condition (CS1), which states existence of a trajectory converging
to a fixed point. This essentially suggests that a bounded trajectory necessary converges to a fixed
pooint (at least in the domain Ξd), that the renormalization group dynamical system is free of limit
cycles much less any chaotic behaviors. There are of course many discrete dynamical systems, even
on one-dimensional space, which exhibit chaotic behaviors, hence this condition is far from trivial.

On the other hand, it is proved in [5] and [6] that for d = 2 and d = 3, all the conditions (FP1) –
(FP4) and (CS1) are satisfied. We also prove in Section 5 that (FP1) – (FP4) and (CS2) are satisfied
for the restricted model on 4SG. Based on these results, we conjecture that these conditions are
satisfied (hence the results about the asymptotic behaviors of the self-avoiding walks hold) for all d.

✸

3.2 Asymptotic behaviors.

Here we will state main consequences of assumptions on RG formulated in Section 3.1.
First we note the following characterization of a critical point βc .

Theorem 7 If βc ∈ R is a critical point of the full model and �xc the corresponding fixed point (implicit in
the definition (CS1)), then for I ∈ Id ,

lim
n→∞Zn,I(β) =

{
0, β > βc ,
xc,I , β = βc .

Moreover,

lim
n→∞

d∑
i=1

Zn,(i)(β) =∞, β < βc .

In particular, critical point (if exists) is unique.
Similar result holds also for the restricted model (CS2).

Since the critical point (if exists) is unique, there is one and only one self-avoiding fixed point that is related
by (CS1) to the critical point.
Though it is not trivial to prove the uniqueness of self-avoiding fixed point, we therefore can (and we

will, in the proof of Theorem 10) talk about the unique self-avoiding fixed point that is related to the
critical point, under the asumption that the critical point exists.

To state the next Theorem, we note a relation between 0 components of a fixed point and an invariant
subset of �Φ. In the known case of d = 2 and d = 3, the self-avoiding fixed points have 0 components. We
will write

K�xc
= {I ∈ Id | xc,I 
= 0}, (22)

and, as in (12),
R

K�xc
+ = {�x ∈ R

Id
+ | xJ = 0, J 
∈ K�xc

} .
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Proposition 8 R
K�xc
+ is an invariant subset of �Φ.

Proof. If xc,I = 0 then ΦI(�xc) = xc,I = 0 . On the other hand ΦI is a polynomial with positive coefficients.
Therefore, each term in ΦI(�x) contains one of xJ ’s such that xc,J = 0 . In other words, each term in ΦI(�x)
contains xJ such that J 
∈ K�xc

.
Therefore, if �x ∈ R

K�xc
+ , then ΦI(�x) = 0 for those I satisfying xc,I = 0, or equivalently, I 
∈ K�xc

. ✷

Remark. For d = 2 and d = 3, the results in [5] and [6] respectively proves (by explicit calculations) that
the self-avoiding fixed point �xc is unique and that Kres = K�xc

. ✸

For I ∈ Id, n ∈ Z+, and �x ∈ R
Id
+ , define a probability measure µ�x,n,I on the finite set W

(n)
I by

µ�x,n,I [{w}] =
1

Xn,I(�x)

∏
J∈Id

x
sJ (w)
J , w ∈ W

(n)
I , (23)

whenever Xn,I(�x) 
= 0 .
Note that if xc,I 
= 0 and �x ∈ Dom(�xc), then (DA1) implies that Xn,I(�x) > 0 for sufficiently large n,

hence if �x ∈ Dom(�xc) then µ�x,n,I is well defined.

Theorem 9 Let �xc be a self-avoiding fixed point and �x ∈ Dom(�xc). Then the following hold.

(i) There exists fd × fd matrix Λ(�x) whose elements are non-negative such that

Λ(�x) = lim
n→∞ λ−nJn(�x), (24)

where Jn is as in (14).

(ii) For I ∈ K�xc
, the joint distribution of scaled generalized path lengths (λ−nsJ , J ∈ K�xc

) under µ�x,n,I
converges weakly to a Borel probability measure p∗�x,I on R

Id as n → ∞. Here, λ is as in (FP2). p∗�x,I
is supported on R

Id
+ .

The generating function ϕ∗
I = ϕ∗

�x,I , as a function of (tJ , J ∈ K�xc
), defined by

ϕ∗
�x,I(�t) =

∫ ∞

0

e
�t·�ξp∗�x,I [d�ξ], �t ∈ C

K�xc ,

is an entire function in �t.

(iii) The set of functions ϕ∗
I = ϕ∗

�x,I , I ∈ K�xc
, are uniquely determined by

xc,I
∂ϕ∗

I

∂tJ
(�0) = ΛIJ(�x)xJ , if I, J ∈ K�xc

,

xc,Iϕ
∗
I(λ�t) = ΦI(�xc �ϕ

∗(�t)), �t ∈ C
K�xc , if I ∈ K�xc

,

(25)

where we define ϕ∗
J = 0 for J 
∈ K�xc

, and in the variable for �Φ we used an (irregular) notation

(�x �ϕ∗(�t))J = xJ ϕ
∗
J(�t), J ∈ Id .

(iv) If �x ∈ Dom(�xc) ∩ Ξd and I ∈ K�xc
, then the distribution of λ−nL(w), the scaled length of w ∈ W

(n)
I ,

under µ�x,n,I converges weakly to a Borel probability measure p̄∗�x,I , which has a C∞ density ρ̄∗�x,I .

In particular, ρ̄∗�x,(1)(ξ) > 0, ξ > 0 .

Remark. (i) If xc,I = 0, then the right hand sides in (25) are 0 because of Proposition 8 and (24), hence
the equations in (25) are trivially correct for if I 
∈ K�xc

.

(ii) Existence and positivity of density is used in the proof of Theorem 10.
✸
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We move on to the results on paths with step numbers fixed, instead of paths with endpoints fixed.
We denote the self-avoiding paths starting from origin O by W (0): W (0) = {w ∈ W0 | w(0) = O}. Also,

we define, in analogy with (15), W (0)
K = {w ∈ W (0) | sJ(w) = 0, J 
∈ K}, for K ⊂ Id .

For each k ∈ Z+, let
N(k) = !{w ∈ W (0) | L(w) = k}

be the number of self-avoiding paths of length k starting from O, and for K ⊂ Id ,

NK(k) = !{w ∈ W
(0)
K | L(w) = k}.

Theorem 10 If there exists a critical point βc ∈ R of the full model, then there exist positive constants
Ci , i = 1, 2, and real constants Ci, i = 3, 4, such that

C1k
C3eβck � N(k) � C2k

C4eβck, k = 1, 2, 3, · · · .

Similarly, if there exists a critical point βc,res of the restricted model, then there exist positive constants
C′
i , i = 1, 2, and real constants C′

i, i = 3, 4, such that

C′
1k
C′

3eβc,resk � N(k) � C′
2k
C′

4eβc,resk, k = 1, 2, 3, · · · .

For each positive integer k, let P̃k be a distribution on W (0), defined by

P̃k[A] =
1

N(k)
!{w ∈ A | L(w) = k}, A ⊂ W (0).

The next result shows the existence of the exponent for mean square displacement, which indicates (in
a log ratio sense) that a typical self-avoiding path w of length L(w) = k deviates from the starting point
by |w(k)| � k1/dw , where

dw =
log λ
log 2

. (26)

Theorem 11 If there exists a critical point βc ∈ R of the full model, then there exist constants α, k0, C,
and C′ such that

s log k − sα log log k + C � logEk[|w(k)|s dw ] � s log k + sα log log k + C′, k � k0, s � 0,

where Ek denotes expectation with respect to P̃k , and | · | denotes the (Euclidean) length in Rd.
A similar result holds for the restricted model.

Remark. (i) The intuitive meaning of (26) is as follows. λ is the asymptotic rate of increase of the number
of steps as n is increased. Since the size (scale) is increased by a factor 2 as n is increased by 1, the
log ratio of the number of steps to the distance scale is equal to the log ratio of λ and 2. Though this
is a standard idea in the renormalization group approaches to asymptotic behaviors, our emphasis
here is on the precise mathematical statements and rigorous proofs that fit to such intuitive pictures.

(ii) As may be seen from the fact that λ is defined in (FP2) as the largest eigenvalue of the differential
map of �Φ at �xc while βc is defined in (CS1) as the intersection of the canonical curve and the
critical surface, these two quantities have no direct relations. In fact, in the common wisdom of the
renormalization group ideas, the exponent for mean square displacement is considered to be universal,
i.e., independent of details of the system, (in fact the full model and the restricted model have the
same λ), while the connective constant depends on the details of the system (the full model and the
restricted model have different values of βc). This is related to the fact that λ is a solution to an
algebraic equation and can be calculated explicitly to arbitrary precision, while βc has no such simple
algebraically closed formula and is difficult to calculate explicitly.

(iii) It may be worthwhile to note that the self-avoiding walks on hypercubic lattice Zn in high dimensions
(n > 4) are proved to be in the same universality class as the random walks — i.e., they have similar
asymptotic behaviors — by the lace expansion methods [2, 3]. In a sense, the self-avoiding walks in
high dimensional spaces may be seen as (non-trivial) perturbations to the random walks.

However, it is also believed (and trivially true for n = 1!), that for n < 4 the asymptotic behaviors are
very different, hence the problem remains in lower dimensional spaces. We note that dSG are, from
the renormalization group point of view, spaces ‘between Z1 and Z2 ’. We also point out that the
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lace expansion method heavily uses translational invariance of Zn, while fractals lack the invariance.
In fact, the random walks and the self-avoiding walks are known to be in different universality classes
on 2SG and 3SG; the values of exponents for mean square displacement of the self-avoiding walks
and the random walks have no explicit simple relations [8].

✸

4 Proofs.

4.1 Phase structure.

Here we will prove Theorem 7.
We first note some simple consequences of the definitions.

Proposition 12 Let �xc be a self-avoiding fixed point and λ be as in (FP2). Then 2 < λ < d+ 1.

Proof. Proposition 4 and (14) imply

2ΦI(�x) <
∑
J∈Id

JIJ(�x)xJ < (d+ 1)ΦI(�x), �x ∈ R
Id
+ ; x(1) > 0 .

This, with (FP1) and (FP2), further implies

2
∑
I∈Id

vL,Ixc,I < λ
∑
J∈Id

vL,Jxc,J < (d+ 1)
∑
I∈Id

vL,Ixc,I ,

which implies the statement.
✷

Note that if �xc is a self-avoiding fixed point then Proposition 4 and (FP1) imply

�Xn(�xc) = �xc , n ∈ Z+, (27)

For n ∈ Z+, denote the Jacobi matrices of �Xn by Jn:

Jn,IJ(�x) =
∂Xn,I
∂xJ

(�x), I, J ∈ Id , �x ∈ C
Id . (28)

In particular, we have, from (14), J1 = J . Proposition 4 implies, with an aid of the chain rule,

Jn(�x) = J ( �Xn−1(�x)) · J ( �Xn−2(�x)) · · · · J ( �X1(�x)) · J (�x), n ∈ Z+, (29)

which further implies with (27),
Jn(�xc) = J (�xc)n, n ∈ Z+. (30)

Proposition 13 Φ(1)(�x) contains terms x(i)
2 , 1 � i � d,

Proof. This is proved by a similar graphical consideration as that in the proof of Proposition 4 that Φ(1)(�x)
contains a term x(1)

2.
✷

Proposition 14 If �xc is a self-avoiding fixed point, then

(i) xc,(1) > 0 . Namely, (1) ∈ K�xc
.

(ii) vR,I > 0, I ∈ K�xc
, where �vR is as in (FP2).

Proof. (i) �xc 
= �0, by (FP4). Hence there exists I ∈ Id such that xc,I > 0 . With (FP4), we further see
that there exists 1 � i � d such that xc,(i) > 0 . Proposition 13 then implies that xc,(1) = Φ(1)(�xc) �
x2
c,(i) > 0 .
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(ii) (FP3) and I ∈ K�xc
imply J (�xc)I,(1) > 0 . With (FP2), this further implies vR,I � 1

λ
J(�xc)I,(1) vR,(1) >

0 .
✷

Let
D = {�x ∈ Ξd | sup

n∈Z+

max
I∈Id

Xn,I(�x) < ∞}, (31)

and denote its exterior, boundary, interior in Ξd by Dc, ∂D, and Do, respectively. (Namely, Dc = Ξd \D,
∂D = D ∩Dc, Do = D \ ∂D.) Let also

D̃ = {�x ∈ Ξd | lim
n→∞maxI∈Id

Xn,I(�x) = 0}.

Theorem 15 (i) It holds that

D = {�x ∈ Ξd | sup
n∈Z+

max
I∈Id

Xn,I(�x) � 1}. (32)

In particular, D is a closed subset of Ξd.

(ii) Let �x ∈ D and �x′ ∈ Ξd . If, for each I ∈ Id either x′
I < xI or x′

I = xI = 0 holds, then �x′ ∈ D̃.

(iii) It holds that
Do = D̃ (33)

(iv) Dc, ∂D, and Do are non-empty invariant sets of �Φ.

Remark. Note that this theorem holds independently of the notion of self-avoiding fixed points and critical
points. ✸

Proof. (i) Denote the right hand side of (32) by D′. Obviously D′ ⊂ D. To prove D′c ⊂ Dc (in Ξd),
let �x ∈ D′c ⊂ Ξd. Then the definition of D′ implies that there exists n ∈ Z+ and I ∈ Id such that
Xn,I(�x) > 1, and the definition of Ξd therefore implies Xn,(i)(�x) > 1 for some 1 � i � d. Then
Proposition 13 implies Xn+1,(1)(�x) > 1, which, with Proposition 4, further implies

lim
n→∞Xn,(1)(�x) =∞. (34)

Hence D′c ⊂ Dc.

(ii) The case �x′ = �0 is trivial. For �x and �x′ in R
Id
+ \ {0}, let r = max

I∈Id; xI �=0

x′
I

xI
. Since ΦI , I ∈ Id , are

polynomials with positive coefficients and each term of degree no less than 2 (Proposition 4), we have
max
I∈Id

ΦI(�x′) � r2max
I∈Id

ΦI(�x) if 0 � r � 1 . By induction, max
I∈Id

Xn,I(�x′) � r2n

max
I∈Id

Xn,I(�x), n ∈ Z+. If

�x ∈ D \ {�0} and �x′ ∈ Ξd , and if for each I ∈ Id either x′
I < xI or x′

I = xI = 0 holds, then 0 � r < 1 .
Since {Xn,I(�x)} is bounded, we have �x′ ∈ D̃.

(iii) For ε > 0 let Dε = {�x ∈ Ξd |
∑
I∈Id

xI < ε}. Since ΦI is a polynomial with each term of order no less

than 2 (Proposition 4), there exists a constant M > 0 such that∑
I∈Id

ΦI(�x) � Mε
∑
I∈Id

xI , �x ∈ Dε, 0 < ε < 1 .

Let ε = 1
2M ∧ 1

2 . Then by induction in n with

∑
I∈Id

Xn+1,I(�x) =
∑
I∈Id

ΦI( �Xn(�x)),
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we have, for �x ∈ Dε , �Xn(�x) ∈ Dε, n ∈ Z+. Then we further have

∑
I∈Id

Xn+1,I(�x) � Mε
∑
I∈Id

Xn,I(�x) � 1
2

∑
I∈Id

Xn,I(�x), n ∈ Z+,

which implies �x ∈ D̃. Hence Dε ⊂ D̃ for ε = 1
2M ∧ 1

2 . On the other hand, the definition of D̃ implies
that if �x ∈ D̃ then �Xn(�x) ∈ Dε for sufficiently large n. �Xn is a continuous function and Dε is an open
set, hence there exists an open neighborhood U of �x such that �Xn(U) ⊂ Dε. Hence U ⊂ D̃. This
implies that D̃ is an open subset of D. Since Do is the largest open set of D, this implies D̃ ⊂ Do.

To prove D̃ ⊃ Do, assume �x′ ∈ Do. Since Do is an open set, there exists �x ∈ Do such that x′
I < xI ,

I ∈ Id . Then, the above claim imples �x′ ∈ D̃.

(iv) By (33), (32), and (34), we see that D, Do, and Dc are invariant sets of �Φ. Since D = D, ∂D also
is invariant. Obviously, �x with small enough components is in Do and that with sufficiently large
components is in Dc, hence the boundary ∂D is also non-empty.

✷

Proof of Theorem 7. The case β = βc holds by the definition (CS1).
By the definitions (CS1) and (FP4), lim

n→∞
�Xn(�xcan(βc)) = �xc 
= �0 , which, with (31) and (33), implies

�xcan(βc) ∈ ∂D. Monotonicity property in Theorem 15 then implies �xcan(β) ∈ D̃ if β > βc , hence, in
particular, lim

n→∞
�Zn(β) = 0 .

Finally, if β < βc and �xcan(β) ∈ D = D, then the monotonicity property in Theorem 15 implies
�xcan(βc) ∈ D̃ = Do, which contradicts �xcan(βc) ∈ ∂D. Hence �xcan(β) ∈ Dc and in particular, with the

same argument as that led to (34), we have lim
n→∞

d∑
i=1

Zn,(i)(β) =∞ .

The case of restricted model is similarly proved, if we note (CS2) in place of (CS1).
✷

We will use the following in the proof of Theorem 10.

Proposition 16 If �x ∈ Do then lim
n→∞maxI∈Id

2−n logXn,I(�x) < 0 .

Proof. Write Yn = max
I∈Id

logXn,I , n ∈ Z+. Since ΦI are polynomials of positive coefficients with each term

of degree no less than 2 (Proposition 4), there exists a polynomial P1 with positive coefficients such that

Yn+1(�x) � 2Yn(�x) + logP1(exp(Yn(�x))), n ∈ Z+, �x ∈ R
Id
+ .

If �x ∈ Do, Theorem 15 implies that �Xn(�x) ∈ Do, n ∈ Z+. Hence, { �Xn(�x) | n ∈ Z+} is bounded, and
there exists M ∈ R, a constant in n, such that

Yn+1(�x) � 2Yn(�x) +M, n ∈ Z+. (35)

In particular, 2−n(Yn(�x) +M) is decreasing, hence

lim
n→∞ 2

−n(Yn(�x) +M) � 2−n0(Yn0(�x) +M), n0 ∈ Z+.

Also �x ∈ Do implies
lim
n→∞Yn(�x) = −∞.

Hence
lim
n→∞ 2

−nYn(�x) = lim
n→∞ 2

−n(Yn(�x) +M) < 0,

which implies the statement.
✷
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4.2 Distribution of path length.

Here we will prove Theorem 9.

Proposition 17 Let �xc be a self-avoiding fixed point and �x ∈ Dom(�xc) then there exists fd × fd matrix
Λ(�x) such that (24) holds. The elements of the matrix are non-negative, and

Λ(�x)I,(1) > 0, I ∈ K�xc
. (36)

Proof. First note that (FP2) and (30) imply an existence of the limit in (24) for �x = �xc .
Next recall the following two results.

Lemma 18 ([6, Lemma 4.2], [5, Lemma (3.1)]) Let N be a positive integer, and A and An, n ∈ N, be
N×N matrices. Assume that there is an invertible N×N matrix Q such that Q−1AQ is a diagonal matrix

whose eigenvalue λ that is largest in absolute value, is positive. Assume further that
∞∑
n=1

‖An −A‖ < ∞.

Then there exists a matrix R such that

lim
m→∞ lim

n→∞
∥∥λ−nAn+mAn+m−1 · · ·Am+1 − R

∥∥ = 0 .
Q−1RQ is a diagonal matrix whose diagonal elements satisfy (Q−1RQ)ii = 1 if (Q−1AQ)ii = λ, and
(Q−1RQ)ii = 0 otherwise. Moreover lim

n→∞λ−nAnAn−1 · · ·A1 exists.

(‖A‖ is the standard operator norm defined as the square root of largest eigenvalue of A∗A.)

Lemma 19 ([6, Proposition 3.8]) If �xc is a self-avoiding fixed point and �x ∈ Dom(�xc), then there exist
positive constants ρ and C, satisfying ρ < 1, such that

|Xn,I(�x)− xc,I | � Cρn, n ∈ Z+, I ∈ Id .

Remark. (i) The proof in [6, Proposition 3.8] is for d = 3, but the proof is directly applicable to general
cases. In fact, the proof is an application of a general theory for diffeomorphisms [10].

(ii) Though we do not use this, the proof in [6, Proposition 3.8] implies that Lemma 19 holds for any ρ
satisfying

max{λ−1, |λ2|} < ρ < 1,

where λ2 is the eigenvalue of J (�xc) which is second largest in absolute value.
✸

Let us proceed with the proof of existence of the limit in Proposition 17. By the mean-value theorem,

JIJ (�x)− JIJ (�xc) =
∑
K∈Id

∂JIJ
∂xK

(�u) (xK − xc,K), I, J ∈ Id . (37)

where �u = �xc + (�x− �xc)θ for some θ ∈ (0, 1).
Since �x ∈ Dom(�xc), �Xm(�x) is in a neghborhood of �xc for sufficiently large m. Therefore �Xm(�x) is in a

bounded domain. In particular, there exists a positive constant M such that∣∣∣∣∂JIJ∂xK
(�u)

∣∣∣∣ � M, I, J,K ∈ Id , �u = �xc + ( �Xm(�x)− �xc)θ, 0 < θ < 1 , m ∈ N.

This with (37) and Lemma 19 implies∥∥∥J ( �Xm(�x))− J (�xc)
∥∥∥ � C′ρm, m ∈ Z+,

for some C′ > 0 and 0 < ρ < 1 . Therefore we see that the assumptions in Lemma 18 are satisfied with

An = J ( �Xn(�x)) (38)

and A = J (�xc). Hence, the limit (24) exists.
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To prove (36), let i be an index satisfying (Q−1AQ)ii = λ. Then the column i of the matrix Q in
Lemma 18, applied to the present case, can be chosen to be proportional to the right eigenvector �vR of
A = J (�xc) in (FP2). Similarly, the row i of matrix Q−1, applied to the present case, can be chosen to be
the left eigenvector �vL in (FP2). Therefore Lemma 18 implies that if vR,I > 0 then for sufficiently large
m, lim

n→∞λ−nAn+mAn+m−1 · · ·Am+1 for An given by (38) has positive (I, J) element for all J ∈ Id , in
particular, for J = (1). Also, since Φ(1)(�x) contains a term x(1)

2 (Proposition 4), An has positive ((1), (1))
element, which further implies that AmAm−1 · · ·A1 has positive ((1), (1)) element. Finally, we know from
Proposition 14 that vR,I > 0 for I ∈ K�xc

. Hence (36) holds.
✷

For �x = (xI , I ∈ Id) ∈ C
Id and �t = (tI , I ∈ Id) ∈ C

Id , we use an (irregular) notation

�x(�t) = (xI exp(λ−ntI), I ∈ Id). (39)

Proposition 20 If �x ∈ Dom(�xc) then �Xn(�x(�t)) converges uniformly in �t ∈ C
Id for any compact subset of

C
Id . Furthermore,

(i) If I ∈ Id satisfies xc,I = 0 (i.e., if I 
∈ K�xc
), then

lim
n→∞Xn,I(�x(�t)) = 0, �t ∈ C

Id .

(ii) Define �ϕ∗ = �ϕ∗
�x = (ϕ

∗
�x,I , I ∈ Id) by

ϕ∗
�x,I(�t) =

{
1

xc,I limn→∞Xn,I(�x(�t)), �t ∈ C
Id , if I ∈ K�xc

,

0, if I 
∈ K�xc
.

Then �ϕ∗ is entire and satisfies

xc,Iϕ
∗
I(λ�t) = ΦI(�xc�ϕ

∗(�t)), �t ∈ C
Id , I ∈ Id .

where, the notation of the variable for ΦI is as in Theorem 9. It also holds that

xc,I
∂ϕ∗

I

∂tJ
(�0) = xJ ΛIJ(�x), I, J ∈ Id ,

where Λ is defined in (24).

Proof. For �z ∈ C
Id , define

|�z|∗ =
∑
I∈Id

vL,I |zI |,

where vL,I is as in (FP2). It is easy to see that (FP2) implies that | · |∗ is a norm. (Note that vL,I > 0 ,
I ∈ Id , implies uniqueness, i.e., that |a|∗ = 0 implies a = 0 .)
Using non-negativity of elements of J , we have

|(J (�xc)�z)I | �
∑
J∈Id

J (�xc)IJ |zJ |, I ∈ Id .

Hence
|J (�xc)�z|∗ � λ|�z|∗ , �z ∈ C

Id . (40)

We now see that Proposition 20 is a consequence of the following, which is proved in the proof of [6,
Proposition 4.4].

Lemma 21 Let p ∈ N, and let H(n) : Cp → Cp, n ∈ N, be a sequence of polynomials with positive
coefficients, and each term with degree 2 or larger, which satisfies a recursion relation

H(n+1) = H(1) ◦H(n), n ∈ N. (41)

Let ∂H(1) be the Jacobi matrix of H(1):

∂H
(1)
ij (z) =

∂H
(1)
i

∂zj
(z), i, j ∈ 1, · · · , p, z ∈ C

p.
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Assume that a ∈ R
p
+ is a fixed point of H(1), and that there exists a norm | · |∗ on Cp and λ > 1 such that

|∂H(1)(a)z|∗ � λ|z|∗ , z ∈ C
p, (42)

and that x ∈ R
p
+ is a point for which there exist positive constants ρ and C, satisfying ρ < 1, such that

|H(n)
i (x)− ai| � Cρn, i = 1, · · · , p, n ∈ Z+, (43)

and for which the limit
Λ(x) = lim

n→∞λ−n∂H(n)(x) (44)

exists.
Then there exists an entire function H∗ = (H∗

1 , · · · , H∗
p ) : C

p → C
p such that

lim
n→∞H(n)(x1 exp(λ−nt1), · · · , xp exp(λ−ntp)) = H∗(t),

uniformly in t = (t1, · · · , tp) on any compact set of Cp.
H∗ satisfies

H∗(λt) = H(1)(H∗(t)), t ∈ C
p,

and
∂H∗

i

∂tj
(0) = xjΛij(x), i, j ∈ {1, 2, · · · , p}.

Furthermore, if ai = 0 for some i ∈ {1, · · · , p}, then H∗
i (t) = 0 .

Remark. The proof of [6, Proposition 4.4] is for 3SG, but the proof is valid for the general case of Lemma 21.
In the proof of [6, Proposition 4.4], [6, Theorem 3.5] is referred to, which should be replaced, in the proof
of Lemma 21, by lim

n→∞H(n)(x) = a, which is a consequence of the assumption (43). Similarly, Proposition

3.8, Proposition 4.3, and (4.4) in [6] are replaced by (43), (44), and (41), respectively.
✸

To apply Lemma 21 to the proof of Proposition 20, we only need to note that Proposition 4, (40),
Lemma 19, and Proposition 17, correspond to (41), (42), (43), and (44), respectively.

✷

Proof of Theorem 9. Assume that xc,I 
= 0 and �x ∈ Dom(�xc) .
Denote by p�x,n,I , the joint distribution of (λ−nsJ , J ∈ Id) under µ�x,n,I . Its generating function is

expressed, with the definitions (9) and (23), as

∫ ∞

0

e
�t·�ξp�x,n,I [d�ξ] =

Xn,I(�x(�t))
Xn,I(�x)

, �t ∈ C
Id , (45)

where the notation �x(�t) is as in (39). Since the probability measure in question is a measure on a finite set,
the integration over �ξ in (45) is actually a finite summation, hence the quantity is defined for all complex
�t.
Using Proposition 20 and (DA1) in (45), we see that the right hand side of (45) converges to ϕ∗

I(�t) =
ϕ∗
�x,I(�t) of Proposition 20, uniformly in �t on compact sets. Hence p�x,n,I converges weakly to a probability
measure p∗�x,I whose generating function is ϕ

∗
I(�t).

We therefore see that the claims in Theorem 9, except those on the existence and positivity of the
density of p̄∗�x,(1), are direct consequences of Proposition 17 and Proposition 20. That (25) determines �ϕ

∗

follows from the fact that its Taylor coefficients are determined recursively by (25). (Note that ΦI is a
polynomial with each term having degree 2 or larger. Hence when comparing the coefficients of tN in both
hand sides of (25), the right hand side contains coefficients for lower order than N , hence the coefficients
of �ϕ∗ is determined inductively in N .)
To prove that p̄∗�x,I has a C

∞ density, we prepare the following.
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Denote by p̄�x,n,I , the distribution of λ−nL under µ�x,n,I . Its generating function is, from (7) and (45),∫ ∞

0

etξp̄�x,n,I [dξ] =
Xn,I(�x(t�e))
Xn,I(�x)

, t ∈ C, (46)

where �e = (eJ , J ∈ Id) is given by
eJ = |J |. (47)

According to what has been proved below (45), (46) converges to an entire function

gI(t) = g�x,I(t) = ϕ∗
I(t�e) (48)

uniformly in t on compact sets of R, and p̄�x,n,I converges weakly to a probability measure p̄∗�x,I whose
generating function is gI .
Proposition 20 also implies that

xc,I
dgI
dt
(0) = xc,I

∫ ∞

0

ξp̄∗�x,I [dξ] =
∑
J∈Id

eJ xJ ΛIJ(�x), I ∈ Id , (49)

and
xc,IgI(λt) = ΦI(�xc�g(t)), I ∈ Id, t ∈ C, (50)

where, the notation of the variable for ΦI is as in Theorem 9, and we also defined

gJ = 0, if xc,J = 0 .

Lemma 22 (i) MI =MI(�x) :=
∫ ∞

0

ξp̄∗�x,I [dξ] > 0, I ∈ K�xc
, �x ∈ Ξd ∩Dom(�xc).

(ii) If �x ∈ Ξd ∩ Dom(�xc) and I ∈ K�xc
then p̄∗�x,I is not concentrated on a single point (i.e., has non-zero

variance). Namely,

VI = VI(�x) :=
∫ ∞

0

(ξ −MI(�x))2p̄∗�x,I [dξ] > 0, I ∈ K�xc
, �x ∈ Ξd ∩ Dom(�xc).

(iii) If �x ∈ Ξd ∩ Dom(�xc) then there exist positive constants C1 and C2 such that

max
I∈K�xc

|gI(
√
−1t)| � C2 exp(−C1|t|1/dw), t ∈ R,

where dw is as in (26).

Proof. (i) Using (49) we have ∫ ∞

0

ξp̄∗�x,I [dξ] � e(1)

x(1)

xc,I
ΛI (1)(�x) > 0,

where we used (47) for e(1) > 0, �x ∈ Ξd ∩ Dom(�xc) for x(1) > 0, and (36) for ΛI (1)(�x) > 0 .

(ii) By definition (Proposition 4 and (9)), we have

ΦI(�x) =
∑
m∈Z

Id
+

bI,m
∏
J∈Id

xJ
mJ , �x ∈ C

Id , I ∈ Id ,

where
bI,m = !{w ∈ W

(1)
I | �s(w) = m}, I ∈ Id , m ∈ Z

Id
+ .

Then (50) implies

xc,IgI(λt) = ΦI(�xc �g(t)) =
∑
m∈Z

Id
+

CI,m
∏
J∈Id

gJ(t)mJ , t ∈ C, (51)

where we wrote
CI,m = bI,m

∏
J∈Id

xmJ

c,J .
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Now assume that p̄�x,I is concentrated on a single point for some I ∈ K�xc
. Then its generating

function is
gI(t) = eMI t. (52)

Differentiating (51) by t up to twice, putting t = 0, and using (52) on the left hand side, we obtain
equations, which eventually lead to

(0 �)
∑
m

CI,m(λMI −
∑
J

mJMJ)2 = −
∑
m

CI,m
∑
J

mJVJ .

Since CI,m, mJ , and VJ are non-negative, it follows that VJ = 0 for all J ∈ Id such that there exists
m ∈ Z

Id
+ satisfying mJ > 0 and mK = 0 if K 
∈ K�xc

. In other words, VJ = 0 for all J ∈ Id such that
ΦI(�x) has a term which contains a positive power of xJ and composed of those xK with K ∈ K�xc

.
With (FP3) we see that J = (1) has such property for all I ∈ K�xc

. Hence V(1) = 0, and p̄�x,(1) is
concentrated on a single point.

The arguments after (52) can now be repeated with I = (1). Using also (FP3) again, we eventually
see that (51) implies

xc,(1) exp(λM(1) t) =
∑

m∈Z
K�xc
+

C(1),m exp(
∑
J∈K�xc

MJ mJ t), t ∈ C.

But Φ(1) is a polynomial, hence the right hand side is actually a finite summation with positive
coefficients, so this can hold only if

λM(1) =
∑
J∈K�xc

MJ mJ ,

for all m such that C(1),m > 0 . Proposition 4 implies that C(1),m > 0 for m such that;

(a) m(1) = 2 and mJ = 0, J 
= (1),
(b) m(1) = d+ 1 and mJ = 0, J 
= (1).

Therefore 2M(1) = (d + 1)M(1) , hence M(1) = 0 for d � 2, which is a contradiction, because
Proposition 14 implies (1) ∈ K�xc

, which, with the preceding result, implies M(1) > 0 .

This proves that if I ∈ K�xc
and �x ∈ Dom(�xc) ∩ Ξd, then p̄�x,I is not concentrated on a single point.

(iii) The preceeding result implies, by a standard argument relating positivity of variances and the absolute
values of characteristic functions, that there exists a > 0 such that

|gI(
√
−1t)| < 1, −a < t < a, t 
= 0, I ∈ K�xc

.

Since characteristic functions are continuous, this further implies that there exist a′ > 0 and 0 < C <
1 such that

|gI(
√
−1t)| � C,

a′

λ
� |t| � a′, t ∈ R, I ∈ K�xc

. (53)

Also (51) and (FP1) and the fact that each term in ΦI has degree 2 or more (Proposition 4) imply
(together with the fact that absolute values of characteristic functions are no greater than 1),

max
I∈K�xc

|gI(
√
−1λt)| � max

I∈K�xc

|gI(
√
−1t)|2, t ∈ R.

This and (53) imply

|gI(
√
−1t)| � C2 exp(−C1|t|1/dw), t ∈ R, I ∈ K�xc

,

for some positive constants C1 and C2 .
This completes a proof of Lemma 22.

✷
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The last statement in Lemma 22 implies (through the inversion formula and the convergence of∫ ∞

−∞
tngI(

√
−1t) dt, t = 1, 2, 3, · · ·,) the existence of C∞ density ρ̄∗�x,(1) of p̄

∗
�x,(1) .

To prove the positivity of ρ̄∗�x,(1) , substitute g(1)(t) =
∫ ∞

0

etξρ̄∗�x,(1)(ξ) dξ in (50), to find

λ−1ρ̄∗�x,(1)(λ
−1ξ) = xc,(1)(ρ̄∗�x,(1)∗ρ̄∗�x,(1))(ξ)+xc,(1)d(ρ̄∗�x,(1)∗ρ̄∗�x,(1)∗· · ·∗ρ̄∗�x,(1))(ξ)+ non-negative terms, ξ � 0 ,

where the operation ∗ denotes convolution, and we also used Proposition 4. Note first that since ρ̄∗�x,(1) is
continuous and M(1) > 0, there is a ξ0 > 0 for which ρ̄∗�x,(1)(ξ) > 0 in a neighborhood of ξ0 . Furthermore,
the above relation implies that if ρ̄∗�x,(1) is positive in a neighborhood of ξ1, ξ2 � 0, then it also is in a
neighborhood of λ−1(ξ1 + ξ2). With Proposition 12 and the continuity of ρ̄∗�x,(1) , we therefore see that
ρ̄∗�x,(1) is positive in a neighborhood of 0 . The above relation also implies that if ρ̄

∗
�x,(1) is positive in a

neighborhood of ξ1, ξ2, · · · , ξd+1 � 0, then it also is in a neighborhood of λ−1(ξ1 + ξ2 + · · ·+ ξd+1). With
Proposition 12, we inductively see that ρ̄∗�x,(1) is positive on (0,∞).
This completes a proof of Theorem 9.

✷

4.3 Exponent for mean square displacement.

Here we prove Theorem 10 and Theorem 11. Since the proofs are similar for the full model and the
restricted model, we will concentrate on the full model.
We introduce the following notation which we use throughout this section.
Define ν : W (0) → Z+ ∪ {∞} by

ν(w) = min{n ∈ Z+ ∪ {∞} | w(k) ∈ Gn , k = 0, 1, 2, · · · , L(w)}, w ∈ W (0). (54)

Note the obvious relation
2ν(w)−1 < L(w) � d(d+ 1)ν(w), w ∈ W (0). (55)

(The second inequality is because there are (d + 1)n unit simplices in Fn, and within each unit simplex a
self-avoiding walk can spend at most d steps.)
For w ∈ W (0), let ‖w‖ = max{|w(k)| | k = 0, 1, 2, · · · , L(w)}, where | · | denotes the (Euclidean) length

in Rd ⊃ F . By definition,
2ν(w)−1 < ‖w‖ � 2ν(w). (56)

(To see this, note that by definition of ν(w), w is contained in the ball of radius 2ν(w) centered at O, but
not in the ball of radius 2ν(w)−1.)

4.3.1 Tauberian type estimates and number of paths.

Here we prove Theorem 10 for the full model.
Let λ be as before, βc be a critical point of the full model, and �xcan(βc) = �xcan,Id

(βc) be as in (17).

Proposition 23 Define, for b > 0, n ∈ Z+, ξ ∈ R, cn = bλ−n√n and hn(ξ) =
1√
2πcn

e−ξ
2/(2c2n). Then

for sufficiently large b it holds that

lim
n→∞(p̄�xcan(βc),n,I ∗ hn)(ξ) = ρ̄∗�xcan(βc),I

(ξ), I ∈ K�xc
,

uniformly in ξ ∈ R, where

(p̄�x,n,I ∗ hn)(ξ) =
∫

R

hn(ξ − η) p̄�x,n,I(dη)

is a convolution.
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Proof. For n ∈ Z+ and I ∈ Id , denote the characteristic function of (p̄�xcan(βc),n,I ∗ hn)(ξ) dξ by φn,I . Then

φn,I (t) =
∫

e
√−1ξt(p̄�xcan(βc),n,I ∗ hn)(ξ) dξ = ϕ̄�xcan(βc),n,I(t)e

−c2nt2/2, (57)

where, using (17), (19), (47), (39) in (46), we find

ϕ̄�xcan(βc),n,I(t) =
Zn,I(βc −

√
−1λ−nt)

Zn,I(βc)
, t ∈ C.

According to what is proved for (48), we have

lim
n→∞ ϕ̄�xcan(βc),n,I(t) = g�xcan(βc),I(t), (58)

uniformly in t on compact sets. Let A = {t ∈ C | Imt � 0, λ−1 � |t| � 1}. Then Lemma 22 and (CS1)
implies sup

t∈A
|g�xcan(βc),I(

√
−1t)| < 1 for I ∈ K�xc

. With (CS1) we therefore see that for sufficiently small

positive ε > 0 there exists an integer n1 such that

|Zn,I(βc−
√
−1λ−nt)| = Zn,I(βc)|ϕ̄�xcan(βc),n,I(t)| < xc,I−ε, I ∈ K�xc

, n = n1, n1+1, · · · , I ∈ K�xc
, t ∈ A.
(59)

Define �x′ = (x′
I ; I ∈ Id) by

x′
I =

{
xc,I − ε, I ∈ K�xc

,
0 I 
∈ K�xc

.

Then �x′ ∈ Do \ {0} by Theorem 15. Since Do is an open set in Ξd , there exists δ > 0 such that if we define
�x′′ = (x′′

I ; I ∈ Id) by

x′′
I =

{
xc,I − ε, I ∈ K�xc

,
δ I 
∈ K�xc

,

then �x′′ ∈ Do. Also, by the definition of K�xc
and (CS1), there exists n0 � n1 such that

|Zn,I(βc −
√
−1λ−nt)| � Zn,I(βc) < δ, I 
∈ K�xc

, n = n0, n0 + 1, · · · , t ∈ R. (60)

Proposition 16, (59), and (60) then imply, with �x′′ ∈ Do, that there exists positive constants C1 and C2

such that

|Zm+n,I(βc −
√
−1λ−nt)| = |Xm,I(�Zn(βc −

√
−1λ−nt)| � Xm,I(�x′′) � C1e

−C22
m

,
m ∈ Z+, n = n0, n0 + 1, · · · , I ∈ Id, t ∈ A.

(61)

Let n be an integer satisfying n > n0 , and t be a real satisfying |t| ∈ [1, λn−n0−1), andm =
[
log |t|
log λ

]
+1,

where [x] is the largest integer not exceeding x. Then n −m � n0 and λ−mt ∈ A . Hence (61) and (57)
imply

|φn,I(t)| � |Zm+n−m,I(βc −
√
−1λ−(n−m)(λ−mt))|

Zn,I(βc)
� C1

Zn,I(βc)
e−C22

m � C1

Zn,I(βc)
e−C2|t|1/dw

,

n > n0, I ∈ Id , |t| ∈ [1, λn−n0−1).

On the other hand, we have lim
n→∞Zn,I(βc) = xc,I , and lim

n→∞φn,I (t) = g�xcan(βc),I(t), t ∈ R, by (58). Hence
the dominated convergence theorem implies

lim
n→∞

∫
R

|χ[−λn−n0−1,λn−n0−1](t)φn,I (t)− g�xcan(βc),I(t)| dt = 0, I ∈ K�xc
,

where χA denotes the indicator function of a set A.
On the other hand,∫

R

|χ[−λn−n0−1,λn−n0−1](t)φn,I (t)− φn,I(t)| dt � 2
∫ ∞

λn−n0−1
e−c

2
nt

2/2 dt

� 2
∫ ∞

λn−n0−1
te−c

2
nt

2/2 dt =
2
b2n

e−n(b2λ−2n0−2/2−2 log λ) → 0, n → ∞,
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for sufficiently large b. Therefore

lim
n→∞

∫
R

|φn,I (t)− g�xcan(βc),I(t)| dt = 0 .

Using the inversion formula we therefore have

sup
ξ∈R

|(p̄�xcan(βc),n,I ∗ hn)(ξ)− ρ̄∗�xcan(βc),I
(ξ)| �

∫
R

|e−
√−1ξtφn,I(t)− ϕ̄�xcan(βc),I(t)| dt → 0, n → ∞.

✷

We will use the following in Section 4.3.2.

Corollary 24 (i) There exists positive constants C1 and C2 such that

Zm+n,I(βc + λ−n) � C1e
−C22

m

, m, n ∈ Z+, I ∈ Id .

(ii) There exists a positive constant C such that

Zn,I(βc − λ−n) � C, n ∈ Z+, I ∈ Id .

Proof. (i) Since �xcan(βc + λ−nt) ∈ Do ∩ Ξd for t > 0, we may use Proposition 16 in a similar way as in
the proof of (61) to prove the first claim.

(ii) The second claim is a direct consequence of Proposition 20 for �t = �e (defined in (47)), combined with
(19).

✷

Proof of Theorem 10. To prove the upper bound, define

ζn =
∑

w∈W (0); ν(w)�n
e−βcL(w), n ∈ Z+. (62)

Then a consideration similar to that in the proof of Proposition 4 proves that there exists a polynomial
f1 : RId → R with positive coefficients, of maximal degree d+ 1, satisfying f1(�0) = 1, such that

ζn+1 � f1(�Zn(βc))ζn, n ∈ Z+. (63)

The assumption (CS1) implies that �Zn(βc) is bounded, hence there exist positive constants A1 and A2 � 1
such that

ζn � A1A
n
2 , n ∈ Z+. (64)

L > 2ν−1 in (55) therefore implies

e−βckN(k) �
∑

w∈W (0); L(w)�k
e−βcL(w) � ζ[log2 k]+1 � A1A2 k

log2 A2 ,

which proves the upper bound.
To prove the lower bound, let b > 0 be a constant such that the bound in Proposition 23 holds, and let

dn =
√
2n logλcn =

√
2 logλ b n λ−n, n ∈ Z+. Then Proposition 23 implies

lim
n→∞ supξ∈R

|
∫

[ξ−dn,ξ+dn]

hn(ξ − η) p̄�xcan(βc),n,(1)(dη)− ρ̄∗�xcan(βc),(1)
(ξ)|

� lim
n→∞ supξ∈R

∫
R\[ξ−dn,ξ+dn]

hn(ξ − η) p̄�xcan(βc),n,(1)(dη)

� lim
n→∞hn(dn) = lim

n→∞
1√
2πb2n

= 0 .
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With the positivity of ρ̄∗�xcan(βc),(1)
(Theorem 9), this implies that there exists an integer n2 and a positive

constant ε such that

p̄�xcan(βc),n,(1)([ξ − dn, ξ + dn]) � cnε, n � n2 , ξ ∈ [λ−1, λ].

Let k be a positive integer, and let n be a positive integer satisfying λ−nk ∈ [1, λ). Assume that k is
sufficiently large so that n � n2 and dn � 1− λ−1. Then

p̄�xcan(βc),n,(1)([λ
−nk − 2dn, λ−nk]) � cnε.

Note that we can construct an injection {w ∈ W
(n)
(1) | L(w) � k} → {w ∈ W (0) | L(w) = k} by extending

the path. Hence

Zn,(1)(βc)cnε �
∑

w∈W (n)
(1) ; k−2dnλn�L(w)�k

e−βcL(w) � e2βcdnλ
n

e−βckN(k).

Note that λ−nk � 1 implies n � log k
log λ

, which further implies

dnλ
n �

√
2/ logλb log k.

Since n � 1 for sufficiently large k, λ−nk � 1 also implies cn � bk−1. Hence (for sufficiently large k),

N(k) � eβckk−1−2bβc

√
2/ log λZn,(1)(βc)bε,

which implies the lower bound.
✷

4.3.2 Large deviation type estimates on long paths and short paths.

Define, for n,m ∈ Z+,

Un,m =
∑

w∈W (0);
ν(w)�n,

L(w)�λn+(m/2)

e−βcL(w) and Vn,m =
∑

w∈W (0);
ν(w)=n+1,

L(w)�λn−m

e−βcL(w).

Proposition 25 There exist positive constants C′ and C′′ such that

Un,m � C′An2 e
−C′′λm/2

, and Vn,m � C′An2 e
−C′′2m

, n,m ∈ Z+,

where A2 is as in (64).

Proof. Let C′′ be a positive constant satisfying C′′ � λ−
√
λ

d+ 1
.

To prove the bound for Un,m , define

Sn,m,I =
∑

w∈W (n)
I , L(w)�C′′λn+(m/2)

e−βcL(w), n,m ∈ Z+, I ∈ Id .

Then, in a similar way as deriving (63), we find

Un+1,m � f1(�Zn(βc))Un,m+1 +
∑
I∈Id

Sn,m,I
∂f1

∂xI
(�Zn(βc)) ζn , n,m ∈ Z+.

This with (64) implies that there exists C1 > 0 such that

A−n−1
2 Un+1,m � A−n

2 Un,m+1 + C1

∑
I∈Id

Sn,m,I , n,m ∈ Z+.
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Note that L(w) � d (d+ 1)ν(w) in (55) implies

Un,m = 0, λn+(m/2) > d (d+ 1)n,

which holds if
m >

2 log d
log λ

+ 2αn,

where we wrote α =
log(d + 1)
log λ

− 1 . (Note that Proposition 12 implies α > 0.) Therefore, if we write

k0(n,m) =
[
2αn−m

2α+ 1
+

2 log d
(2α+ 1) log λ

]
,

then

Un,m � C1A
n
2

k0(n,m)∑
k=0

∑
I∈Id

Sn−k−1,m+k,I , n,m ∈ Z+. (65)

On the other hand,

Sn,m,I �
∑

w∈W (n)
I , L(w)�C′′λn+(m/2)

e−(βc−λ−n)L(w)e−C
′′λm/2 � Zn,I(βc − λ−n)e−C

′′λm/2

� Ce−C
′′λm/2

, n,m ∈ Z+, I ∈ Id ,

for a positive constant C, where we used Corollary 24. This and (65) imply

Un,m � CC1!IdAn2
∞∑
k=0

e−C
′′λ(m+k)/2

.

Note that there exists a constant k0 such that

λ(m+k)/2 � λ(m−k0)/2 + λ(k−k0)/2, m, k ∈ Z+.

(This is because

λ(m+k)/2 − (λm/2−k0 + λk/2−k0 ) = (λm/2 − λ−k0/2)(λk/2 − λ−k0/2)− λ−k0

is increasing in m and k, hence it is sufficient to choose k0 such that 1 � 2λ−k0/2.) Therefore there exists
a positive constant C′ such that

Un,m � CC1!Id
∞∑
k=0

e−C
′′λ(k−k0)/2

An2 e
−C′′λ(m−k0)/2 � C′An2 e

−C′′λm/2
, n,m ∈ Z+.

To prove the bound for Vn,m , define

Tn,m,I =
∑

w∈W (n)
I , L(w)�λn−m

e−βcL(w), n,m ∈ Z+; m � n, I ∈ Id ,

and write �Tn,m = (Tn,m,I , I ∈ Id). Then, again in a similar way as deriving (63), we find

Vn,m � (f1(�Tn,m)− 1)ζn = (f1(�Tn,m)− f1(�0))ζn .

On the other hand, the condition L(w) � λn−m in the definition of Tn,m,I implies

Tn,m,I �
∑

w∈W (n)
I

e−(βc+λ
m−n)L(w)+1 = eZn,I(βc + λm−n).

With Corollary 24 and (63) we have the statement.
✷
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Proposition 26 For sufficiently large positive constant α, it holds that

lim
k→∞

(log k)sαk−sEk[‖w‖sdw ] > 0, and lim
k→∞

(log k)−sαk−sEk[‖w‖sdw ] < ∞,

for all s � 0, where Ek[·] is the expectation defined in Theorem 11.

Proof. For k ∈ N, define ñ(k) =
[
log k
log λ

]
. Obviously, λñ(k) � k < λñ(k)+1.

For positive integers m and k satisfying m � ñ(k), Proposition 25 implies

!{w ∈ W (0) | L(w) = k, ν(w) � ñ(k)−m} � eβckUñ(k)−m,2m
� C′ exp(βck + (ñ(k)−m) logA2 − C′′λm)
� C′ exp(βck + loglog λA2 log k − C′′λm).

This and Theorem 10 imply that for sufficiently large α and for any real ε, there exists C > 0 such that

P̃k[ν(w) � ñ(k)− α log log k + ε] � C′C−1
1 exp((loglog λA2 − C3) log k − C′′λ−ε(log k)α log λ)

� Ce−(log k)3 , k ∈ N,

where P̃k[·] is as defined in Theorem 11. This, with (56), implies for sufficiently large α,

lim
k→∞

P̃k[‖w‖ < (log k)−α/dwk1/dw ] e(log k)2 � lim
k→∞

P̃k[2ν(w) < 2(log k)−α/dwk1/dw ] e(log k)2 = 0 .

Chebishev’s inequality implies, for s � 0,

Ek[‖w‖sdw ] � ((log k)−αk)s(1− P̃k[‖w‖ � (log k)−α/dwk1/dw ]).

Therefore,
lim
k→∞

(log k)sαk−sEk[‖w‖sdw ] > 0, s � 0 .

Next, for positive integers m, k, and #, Proposition 25 implies, with an obvious inequality 2m+� �
2m−1 + 2�−1, m, # ∈ Z+,

!{w ∈ W (0) | L(w) = k, ν(w) = ñ(k) +m+ #+ 2} � eβckVñ(k)+m+�+1,m+�

� C′ exp(βck + (ñ(k) +m+ #+ 1) logA2 − C′′2m+�)
� C′ exp(βck + loglog λA2 log k +m logA2 − C′′2m−1)A�+1

2 exp(−C ′′2�−1).

This and Theorem 10 imply that there exists a positive constant C such that

P̃k[ν(w) � ñ(k) +
α

log 2
log log k] =

∞∑
�=0

P̃k[ν(w) = ñ(k) + #+
α

log 2
log log k]

� C′

C1A2

∞∑
�=0

A�2e
−C′′2�−1

exp((loglog λA2 − C3) log k + α log2 A2 log log k − C′′

8
(log k)α)

� C exp((loglog λA2 − C3) log k + α log2 A2 log log k − C′′

8
(log k)α), k ∈ N.

This, with (56), implies for sufficiently large α,

lim
k→∞

P̃k[‖w‖ � (log k)α/dwk1/dw ] e(log k)2 � lim
k→∞

P̃k[2ν(w) � (log k)α/dwk1/dw ] e(log k)2 = 0 .

Let s � 0. Note that ‖w‖ � L(w), which implies

Ek[‖w‖sdw ] � ((log k)αk)s + ksdw P̃k[‖w‖dw � (log k)αk].

Therefore,
lim
k→∞

(log k)−sαk−sEk[‖w‖sdw ] < ∞,

✷
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4.3.3 Reflection principle.

The definition of pre-dSG in (1) and (2) induces a natural coordinate system on G which is an onto map
π : {0, 1, 2, · · · , d}Z+ → G defined as follows. For each v0,i = vi ∈ G0 (i = 0, 1, 2, · · · , d) we assign a
coordinate (i, 0, 0, 0, · · ·);

π(i, 0, 0, 0, · · ·) = v0,i, i = 0, 1, 2, 3, · · · , d.

For n = 0, 1, 2, · · · and i = 0, 1, 2, 3, · · · , d, put Gn,i = Gn + 2nv0,i , and define a 1 : 1 onto map
ιn,i : Gn,i → Gn by ιn,i(v) = v− 2nv0,i . ιn,i naturally induces a 1 : 1 onto map Bn,i → Bn , which we also
denote by ιn,i.
We proceed with by induction in n and assume that a coordinate system π on Gn−1 (= Gn−1,0) has

been defined for an n � 1, in such a way that π(v) ∈ Gn−1 holds for any v = (i0, i1, i2, · · · , in−1, 0, 0, 0, · · ·)
with ik ∈ {0, 1, 2, · · · , d}, k = 0, 1, 2, · · · , n− 1. For v ∈ Gn−1,j , with j ∈ {0, 1, 2, · · · , d}, define

π(i0, i1, i2, · · · , in−1, j, 0, 0, · · ·) = v, if π(i0, i1, i2, · · · , in−1, 0, 0, 0, · · ·) = ιn−1,j(v).

Note that this definition is compatible with Gn−1,0 = Gn−1 ⊂ Gn .
Each point in G \ {O} has exactly two coordinate representations, because

π(j, j, · · · , j, i, 0, · · ·) = π(i, i, · · · , i, j, 0, · · ·) ∈ Gm,i ∩Gm,j , 0 � i < j � d, m ∈ Z+.

Note also that if π(i0, i1, i2, · · ·) ∈ Gn then ik = 0, k = n+ 1, n+ 2, · · ·.

R2,i

R2,i

R2,i
∼

G1 G1,i ι −1
2,i(G1)

w(L)

T(w)

π(i)=π(0i)
π(ii)=π(00i) π(000i)=π(iii)

π(0i0i)=π(i00i)

π(j0i) π(jii)

π(jji)

Reflection in the i-j hyperplane
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We now define a reflection map (see the Figure) with which we formulate a reflection principle in
Theorem 28. For each i = 1, 2, 3, · · · , d define R0,i : {0, 1, 2, · · · , d} → {0, 1, 2, · · · , d} by


R0,i(0) = i,
R0,i(i) = 0,
R0,i(j) = j, j 
= 0, i.

For n = 1, 2, 3, · · · and i = 1, 2, · · · , d, we define 1 : 1 maps Rn,i : G → G and R̃n,i : G → G
(‘partial reflections’ with respect to a hyperplane containing π(j, j, · · · , j, i, 0, 0, · · ·) ∈ Gn−1,i , j 
= 0, i, and
‘perpendicular to i-th axis’), by:

Rn,i(π(x0, x1, x2, · · ·))

=




π(x0, x1, x2, · · ·), if π(x0, x1, x2, · · · , xn, · · ·) 
∈ Gn−1,i,
π(R0,i(x0), R0,i(x1), · · · , R0,i(xn−1), xn, 0, 0, 0, · · ·),

if π(x0, x1, x2, · · · , xn, · · ·) ∈ Gn−1,i and xn = i,

(66)

and
R̃n,i(π(x0, x1, x2, · · ·))

=




π(x0, x1, x2, · · ·), if π(x0, x1, x2, · · · , xn, · · ·) 
∈ Gn−1 ∪ ι−1
n,i(Gn−1),

π(R0,i(x0), R0,i(x1), · · · , R0,i(xn−1), xn, R0,i(xn+1), 0, 0, · · ·),
if π(x0, x1, x2, · · · , xn, · · ·) ∈ Gn−1 ∪ ι−1

n,i(Gn−1) and xn = 0 .

(67)

Note that Gn−1 , Gn−1,i , and ι−1
n,i(Gn−1) are three copies of Gn−1 aligned in ‘i-th axis’ direction, such that

Gn−1 ∩Gn−1,i = {π(
0, 1, 2
0, 0, 0, · · · , 0,

n
i , 0, 0, · · ·)} = {π(

0, 1, 2
i, i, i , · · · ,

n− 1
i , 0, 0, 0, · · ·)}, (68)

and

Gn−1,i ∩ ι−1
n,i(Gn−1) = {π(

0, 1, 2
0, 0, 0, · · · , 0,

n+ 1
i , 0, 0, · · ·)} = {π(

0, 1, 2
i, i, i , · · · , i,

n
i , 0, 0, · · ·)}. (69)

Note also that, by construction all the points inGn−1,i can be written as π(x0, x1, · · · , xn, 0, 0, · · ·) with xn =
i, those in Gn−1 as π(x0, · · · , xn, 0, 0, · · ·) with xn = 0, and those in ι−1

n,i(Gn−1) as π(x0, · · · , xn, xn+1, 0, · · ·)
with xn = 0 and xn+1 = i.

Proposition 27 Rn,i and R̃n,i are 1 : 1 maps. Moreover, the following hold.

(i) If x ∈ Gn−1 then R̃n,i(x) ∈ ι−1
n,i(Gn−1).

(ii) If (x, y) ∈ Bn−1, then (R̃n,i(x), R̃n,i(y)) ∈ B.

(iii) If x ∈ Gn−1 ∩Gn−1,i then Rn,i(x) = R̃n,i(x).

(iv) If x ∈ Gn then Rn,i(x) ∈ Gn .

(v) If x ∈ Gn−1,i ∩
⋃
j �=0,i

Gn−1,j then Rn,i(x) = x.

(vi) If (x, y) ∈ Bn−1,i then (Rn,i(x), Rn,i(y)) ∈ B.

Proof. By definition, R2
n,i(x) = R̃2

n,i(x) = x, x ∈ G, hence, in particular, Rn,i and R̃n,i are 1 : 1 maps.

(i) If x ∈ Gn−1 then x has a coordinate of the form x = π(x0, x1, · · · , xn−1, 0, 0, 0, · · ·), which, with (67),
implies R̃n,i(x) = π(x0, x1, · · · , xn−1, 0, i, 0, · · ·), which is in ι−1

n,i(Gn−1) .

(ii) let (x, y) ∈ Bn−1 . Then x, y ∈ Gn−1, hence their coordinates can be written as

x = π(x0, x1, · · · , xn−1, 0, 0, 0, · · ·), y = π(y0, y1, · · · , yn−1, 0, 0, 0, · · ·).

With (67), we have

R̃n,i(x) = π(R0,i(x0), R0,i(x1), · · · , R0,i(xn−1), 0, i, 0, 0, · · ·) ∈ ι−1
n,i(Gn−1),
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and a similar expression holds for y. Noting that ι−1
n,i(Gn−1) is a copy of Gn−1, it then suffices to

prove

(π(R0,i(x0), · · · , R0,i(xn−1), 0, 0, · · ·), π(R0,i(y0), · · · , R0,i(yn−1), 0, 0, · · ·)) ∈ Bn−1 .

Noting the definition of Bn−1, we may assume, from (x, y) ∈ Bn−1, that xn−1 = yn−1 and

(π(x0, x1, · · · , xn−2, 0, 0, 0, · · ·), π(y0, y1, · · · , yn−2, 0, 0, 0, · · ·)) ∈ Bn−2 .

Inductively, it eventually turns out that it suffices to prove

(π(R0,i(x), 0, 0, · · ·), π(R0,i(y), 0, 0, · · ·)) ∈ B0 if (π(x, 0, 0, · · ·), π(y, 0, 0, · · ·)) ∈ B0 ,

which is obvious from the definition of F0 = (G0, B0).

(iii) Applying (68) in (66) and (67), we have

Rn,i(x) = Rn,i(π(
0, 1, 2
0, 0, 0, · · · , 0,

n
i , 0, 0, · · ·)) = π(

0, 1, 2
i, i, i , · · · , i,

n
i , 0, 0, · · ·),

and

R̃n,i(x) = R̃n,i(π(
0, 1, 2
i, i, i , · · · ,

n− 1
i , 0, 0, 0, · · ·)) = π(

0, 1, 2
0, 0, 0, · · · , 0, 0,

n+ 1
i , 0, · · ·)

= π(
0, 1, 2
i, i, i , · · · , i,

n
i , 0, 0, · · ·).

Hence Rn,i(x) = R̃n,i(x).

(iv) If x ∈ Gn then x has a coordinate x = π(x0, x1, · · · , xn, 0, 0, · · ·). Then (66) implies that Rn,i(x) has
a similar coordinate, hence Rn,i(x) ∈ Gn .

(v) Noting (68) and (69), we see that x has a coordinate x = π(j, j, · · · , j,
n
i , 0, 0, · · ·), j 
= 0, i. Then (66)

implies Rn,i(x) = x.

(vi) This can be proved in a similar way as (ii).

✷

For each self-avoiding path w ∈ W (0) satisfying |w(L(w))| < 2ν(w)−1, we want to assign a self-avoiding
path R(w) ∈ W (0) (‘reflected path’) such that |R(w)(L(R(w)))| > 2ν(R(w))−1 (the right hand side stands
for the Euclidean distance of the endpoints of R(w)). This is possible using (66) and (67), as follows.
Given w = (w(0), w(1), · · · , w(L(w))) ∈ W (0) with the property

w(L(w)) ∈ Gn−1 \
d⋃
i=1

Gn−1,i , where n = ν(w), (70)

we shall define a path R(w) as follows.
Let T (w) be a positive integer satisfying

w(k) ∈ Gn−1, T (w) � k � L(w), and w(T (w) − 1) 
∈ Gn−1 .

The condition (70) implies that such an integer (uniquely) exists. Since w(T (w)) ∈ Gn−1, w(T (w) − 1) ∈
d⋃
i=1

Gn−1,i . Let i(w) ∈ {1, 2, · · · , d} be such that w(T (w)− 1) ∈ Gn−1,i(w) . Clearly, such an integer is also

unique. Also the definitions of T (w) and i(w) imply

w(T (w)) ∈ Gn−1 ∩Gn−1,i(w) . (71)

Define R(w) by

R(w)(k) =
{

Rn,i(w)(w(k)), 0 � k < T (w),
R̃n,i(w)(w(k)), T (w) � k � L(w).
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Theorem 28 For each w ∈ W (0) satisfying |w(L(w))| < 2ν(w)−1, R(w) ∈ W (0) (i.e., is a self-avoiding
path starting from O) which satisfies L(R(w)) = L(w), ν(R(w)) = ν(w) + 1, and 2ν(w) < |R(w)(L(w))| .

Proof. The non-trivial part of the claim is that R(w) is a self-avoiding path. All the other properties are
obvious from the definition of the reflections.
We first prove that R(w) is self-avoiding, when w is self-avoiding. Let n = ν(w). Note that (71) and

Proposition 27 (iii) imply
Rn,i(w)(w(T (w))) = R̃n,i(w)(w(T (w))). (72)

Since Rn,i and R̃n,i are 1 : 1 maps (Proposition 27), the path segments w1 = {R(w)(k), 0 � k � T (w)}
and w2 = {R(w)(k), T (w) � k � L(w)} are self-avoiding.
The definition of T (w) implies w(k) ∈ Gn−1, T (w) � k � L(w), which, with Proposition 27 (i),

implies R̃n,i(w(k)) ∈ ι−1
n,i(Gn−1), hence, in particular, w2 ∩ Gn = {Rn,i(w(T (w)))}. On the other hand,

Proposition 27 (iv) implies w1 ⊂ Gn . Therefore w1 and w2 are mutually avoiding. This proves that R(w)
is self-avoiding.
We are left with proving that R(w) is a path, i.e.,

(R(w)(k), R(w)(k + 1)) ∈ B, k = 0, 1, 2, · · · , L(w)− 1 . (73)

Definition of T (w) and Proposition 27 (ii) imply (73) for T (w) � k < L(w). Hence we may assume 0 � k <
T (w). Definition of T (w) and (72) imply R(w)(k) = Rn,i(w)(w(k)), 0 � k � T (w). If w(k) 
∈ Gn−1,i(w) ,
then (w(k), w(k+1)) ∈ B and n = ν(w) and (71) with self-avoiding property of w imply w(k+1) 
∈ Gn−1,i(w)

or w(k + 1) ∈ Gn−1,i(w) ∩
⋃

j �=0,i(w)

Gn−1,j . The definition of Rn,i(w) and Proposition 27(v) imply that in

either case Rn,i(w)(w(k + 1)) = w(k + 1). Also w(k) 
∈ Gn−1,i(w) implies Rn,i(w)(w(k)) = w(k). Hence in
this case (73) holds.
The remaining case is when 0 � k < T (w) and w(k) ∈ Gn−1,i(w) hold. If w(k + 1) 
∈ Gn−1,i(w),

then a similar reasoning as above applies. Therefore we may also assume w(k + 1) ∈ Gn−1,i(w) . Hence
(w(k), w(k + 1)) ∈ Bn−1,i(w), in which case Proposition 27 (vi) applies and we have (73).

✷

Corollary 29 If s � 0 and k ∈ N,

Ek[2s(ν(w)−1); |w(k)| � 2ν(w)−1] � Ek[2s(ν(w)−1); |w(k)| � 2ν(w)−1],

where Ek[·] is the expectation defined in Theorem 11.

Proof. Recalling the definition of the measure P̃k , we find from Theorem 28,

Ek[2s(ν(w)−1); |w(k)| < 2ν(w)−1] =
∞∑
n=0

2s(n−1)P̃k[ν(w) = n, |w(k)| < 2n−1]

�
∞∑
n=0

2s(n−1)P̃k[ν(w) = n+ 1, |w(k)| > 2n] = 2−sEk[2s(ν(w)−1); |w(k)| > 2ν(w)−1]

� Ek[2s(ν(w)−1); |w(k)| > 2ν(w)−1].

Hence

Ek[2s(ν(w)−1); |w(k)| � 2ν(w)−1] = Ek[2s(ν(w)−1); |w(k)| = 2ν(w)−1] + Ek[2s(ν(w)−1); |w(k)| < 2ν(w)−1]
� Ek[2s(ν(w)−1); |w(k)| � 2ν(w)−1].

✷

Proof of Theorem 11. Note an obvious bound

|w(L(w))| � ‖w‖ � 2ν(w), w ∈ W (0).
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This and Corollary 29 imply

2−s−1Ek[‖w‖s]
� 2−s−1Ek[2sν(w)] =

1
2
(Ek[2s(ν(w)−1); |w(k)| � 2ν(w)−1] + Ek[2s(ν(w)−1); |w(k)| > 2ν(w)−1])

� Ek[2s(ν(w)−1); |w(k)| � 2ν(w)−1] � Ek[|w(k)|s; |w(k)| � 2ν(w)−1]
� Ek[|w(k)|s] � Ek[‖w‖s], s � 0, k ∈ Z.

This and Proposition 26 further imply, for sufficiently large α,

lim
k→∞

(log k)sαk−sEk[|w(k)|s dw ] > 0, and lim
k→∞

(log k)−sαk−sEk[|w(k)|s dw ] < ∞.

Namely, there exist constants k0, C, and C′ such that

s log k − sα log log k + C � logEk[|w(k)|s dw ] � s log k + sα log log k + C′, k � k0, s � 0,

which completes a proof of Theorem 11. ✷

5 Restricted model on the 4-dimensional Sierpiński gasket.

In this section, we consider the restricted model for d = 4. The RG map �Φ (Proposition 4) is a map on
6 dimensional space CI4 where, as in Section 2, I4 = {(1), (1, 1), (2), (3), (4), (1, 2)}. (For convenience, we
assign the second coordinate to (1, 1) in this section.)
We will consider the restricted self-avoiding walks, the self-avoding paths w starting from O with

the property sJ (w) = 0, J 
∈ Kres , where Kres = {(1), (11)} (see (13) and (15)). We regard R
Kres
+ =

{(x(1), x(11), 0, · · · , 0) | x(1), x(11) ∈ R+} ⊂ R
I4
+ .

To apply the results of previous sections, we use the following explicit properties of �Φ.

Proposition 30 The map �Φ satisfies the following.

(i) �Φ is a 6 dimensional vector valued function whose components are polynomials in 6 variables (1),
(11), (2), (3), (4), (12) with positive integer coefficients. The degree of each term in the polynomials
are no less than 2 and no greater than 5.

(ii)
Φ(1)(x, y, 0, 0, 0, 0) = x2 + 3x3 + 6x4 + 6x5 + 12x3y + 30x4y + 18x2y2

+ 78x3y2 + 96x2y3 + 132xy4 + 132y5,
Φ(1,1)(x, y, 0, 0, 0, 0) = x4 + 2x5 + 4x3y + 13x4y + 32x3y2 + 88x2y3

+ 22y4 + 220xy4 + 186y5.

(74)

(iii) There exist polynomials ΦI,i , I = (1), (11), i = 0, 1, 2, 3, 4, of positive coefficients, such that Φ(1),0

contains a term x2
(1), Φ(11),0 contains a term x4

(1), and

Φ(1)(�x) = Φ(1),1(�x)x(1) + 1
2Φ(1),2(�x)x(2) + 1

3Φ(1),3(�x)x(3) +Φ(1),4(�x)x(11) +Φ(1),0(�x),
Φ(2)(�x) = Φ(1),1(�x)x(2) +Φ(1),2(�x)x(3) +Φ(1),3(�x)x(4) +Φ(1),4(�x)x(12) ,
Φ(11)(�x) = Φ(11),1(�x)x(1) + 1

2Φ(11),2(�x)x(2) + 1
3Φ(11),3(�x)x(3) +Φ(11),4(�x)x(11) +Φ(11),0(�x),

Φ(12)(�x) = Φ(11),1(�x)x(2) +Φ(11),2(�x)x(3) +Φ(11),3(�x)x(4) +Φ(11),4(�x)x(12) .
(75)

(iv) For each I 
∈ Kres there exist positive integers m = mI and m′ = m′
I such that Φ(1) and Φ(11) contain

terms xm(1)xI and xm
′

(1)xI , respectively.

(v) If I 
∈ Kres , then each term in ΦI contains a positive power of xJ for some J 
∈ Kres . Furthermore,
each term in Φ(3) and Φ(4) has total degree 2 or more of xJ ’s with J 
∈ Kres . Φ(2) contains a term
x3

(1)x(11)x(12) and Φ(12) contains a term x4
(1)x(2) .

Proof. (i) This is already proved in Proposition 4.
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(ii) The explicit forms (74) of ΦI(x, y, 0, 0, 0, 0), I = (1), (1, 1), are obtained by explicit counting of paths
in the right hand side of the definition (9) for �Φ = �X1 , with aid of computer calculations. The
explicit forms (74) are given in [9, eqs. (A1) (A2)].

(iii) The expression for Φ(2) in (75) follows from an observation (from the definition (5)) that each path
w in W

(1)
(2) , which starts from O and ends at v1,2 , must pass through v1,1 . w therefore has a path

segment of length more than 1 in the unit simplex F0 + v0,1 (which contains v1,1). The contribution
xI to Φ(2)(�x) from this simplex is therefore in {xI | I 
∈ Kres}. Classifying the terms inΦ(2)(�x) by
this xI , we obtain the claimed expression.

The expression for Φ(12) follows in a similar way.

To relate Φ(2) to Φ(1) , classify the terms again by the contribution from F0 + v0,1 . Let w ∈ W
(1)
(2) .

According to what is just proved, ŵ ∩ (B0 + v0,1) is congruent to one of {∆I | I 
∈ Kres}, in the
notation of Proposition 3.

If it is congruent to ∆(2) , then w has a form vav1,1vb in the simplex. To this w assign a path w′

obtained by replacing vav1,1vb by vavb. Then w′ ∈ W
(1)
(1) , and contributes a term to Φ(1) similar to

the contribution of w to Φ(2) but with x(2) replaced by x(1) .

If w∩ (B0+ v0,1) is congruent to ∆(3) , then w has a form vav1,1vcvb or vavcv1,1vb in the simplex. To
this w assign a path w′ obtained, as before, by shortcutting v1,1 , to obtain vavcvb . Then w′ ∈ W

(1)
(1) ,

and contributes a term to Φ(1) similar to the contribution of w to Φ(2) but with x(3) replaced by x(2) .

This correspondence is 2 to 1, which explains the factor
1
2
in the expression of Φ(1) in (75).

The other possibilities (4) and (12) are similar.

That x2
(1) is contained in Φ(1)(�x) is proved in Proposition 4. This term can not be obtained by an

above mentioned ‘shortcutting’ procedure on paths, so it must be contained in Φ(1),0(�x).

The expression for Φ(11) follows in a similar way.

(iv) W
(1)
(1) contains paths Ov1(v1 + v2)v1,1 , Ov1(v1 + v2)(v1 + v3)v1,1 , Ov1(v1 + v2)(v1 + v3)(v1 + v4)v1,1 ,

and Ov2(v2 + v3)v3v4v1v1,1 , which respectively contribute terms x(1)x(i) , i = 2, 3, 4, and x3
(1)x(12) in

Φ(1) .

Similarly, paths sets
(Ov1v1,1 , v1,2(v3 + v2)(v3 + v1)v1,3),
(Ov1v1,1 , v1,2(v3 + v2)(v3 + v1)(v3 + v4)v1,3),
(Ov1v1,1 , v1,2(v3 + v2)(v3 + v1)(v3 + v4)v3v1,3),
(Ov1v1,1 , v1,2v2v4v3v1,3),

respectively contribute terms x3
(1)x(i) , i = 2, 3, 4, and x3

(1)x(12) in Φ(11) .

(v) The first part follows from (75) and similar expressions for Φ(3), Φ(4) . The second part follows from
an observation similar to that used to prove (75). That Φ(2) contains a term x3

(1)x(11)x(12) follows
from an existence of a path

Ov3(v1 + v3)(v1 + v4)v4v1v1,1(v1 + v2)v1,2 ,

and Φ(12) contains a term x4
(1)x(2) because of a path

(Ov1v1,1 , v1,2(v2 + v3)v1,3(v3 + v4)v1,4).

✷

Theorem 31 (i) Φ(1)(x, y, 0, 0, 0, 0) = x, and Φ(11)(x, y, 0, 0, 0, 0) = y has a unique solution �xc =
(xc, yc, 0, 0, 0, 0) in {(x, y, 0, 0, 0, 0) ∈ R

Kres
+ | (x, y, 0, 0, 0, 0) ∈ Ξ4 \ {�0}}.

xc = 0.326490898 · · · and yc = 0.027929572 · · · are positive. (In particular, Kres = K�xc
.)

(ii) �xc is a self-avoiding fixed point, i.e., satisfies (FP1) – (FP4).
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(iii) There exists a critical point of the restricted model βc,res .

Proof. (i) Since (74) implies x > x2 + 3x3 + 6x4 + 6x5, it follows that 0 < x <
3
8
.

Eliminating y from Φ(1)(x, y, 0, 0, 0, 0) = x and Φ(11)(x, y, 0, 0, 0, 0) = y (in a similar spirit with that
of the proof in [6, Proposition 3.1], but with lengthy calculations), we obtain an algebraic equation
g(x) = 0, where

g(x) = −3162456 + 3162456x+ 27935028x2 + 82351390x3+ 534340195x4 − 22712313853x5

− 22749190609x6+ 173488539516x7+ 520491536505x8+ 159919155293x9

− 1067593750255x10 − 3355567112768x11 − 7117707818273x12 − 8049744033921x13

+ 3218074725393x14+ 29132597332920x15+ 58986824992938x16+ 74778447132144x17

+ 70897214418552x18+ 55063893147408x19+ 36096140965140x20

+ 19669482325692x21+ 7841354208804x22+ 1771680351168x23+ 149567809608x24,

and y is expressed by a rational function of x, say h(x).

The signs of the coefficients imply (by an argument from elementary calculus similar to those in the
proof of [6, Proposition 3.1]) that g′(x) changes sign no more than 4 times on x � 0 (i.e., g′(x) has
no more than 4 positive roots). Since, by explicit calculation, g′(0) > 0, g′(1/5) < 0, g′(3/8) > 0,
g′(3/7) < 0, and g′(+∞) > 0, g′(x) changes sign 4 times on x � 0, and 2 times on 0 � x � 3/8.
Also we have g(0) < 0, g(1/5) < 0, and g(3/8) > 0 . In particular, we have one and only one solution
x = xc of g(x) = 0 in x ∈ (1/5, 3/8).
Again by explicit calculation, we have g′(21/200) > 0 and g′(11/100) < 0, therefore, the other point
that g′(x) changes sign in 0 � x � 3/8 is in the interval (21/200, 11/100). By explicit calculation
g′(x) � g′(21/200) � 9 × 105, x ∈ [21/200, 11/100], and g(21/200) � −2 × 106. Therefore, if
x ∈ [21/200, 11/100], then g(x) � −2×106+4.5×103 < 0. This implies g(x) < 0, 0 � x � 1/5, hence
xc obtained above is the unique solution to g(x) = 0 on x � 0 . With yc = h(xc), (xc, yc) is therefore
the unique solution to Φ(1)(x, y, 0, 0, 0, 0) = x, and Φ(11)(x, y, 0, 0, 0, 0) = y on R2

+. It is easy to see
that xc = 0.326490898 · · · and yc = 0.027929572 · · ·, which prove that (xc, yc, 0, 0, 0, 0) ∈ Ξ4 \ {�0} .

(ii) We prove each of (FP1) – (FP4) in turn.

(a) Proposition 30 (v) implies that if I 
∈ Kres = {(1), (11)} then ΦI(�xc) = 0. Therefore �Φ(�xc) = �xc .

(b) Proposition 30 (v) implies

J(3)J (�xc) = J(4)J (�xc) = 0, J ∈ Id ,

and
JI(1)(�xc) = JI(11)(�xc) = 0, I 
∈ Kres .

Therefore, B = J (�xc) has a form

B =




p 3q B13 B14 B15 B16

q r B23 B24 B25 B26

0 0 B33 B34 B35 B36

0 0 0 0 0 0
0 0 0 0 0 0
0 0 B63 B64 B65 B66




,

where, by (74),

p = 2xc + 9x2
c + 24x

3
c + 30x

4
c + 36x

2
cyc + 120x

3
cyc + 36xcy

2
c + 234x

2
cy

2
c + 192xcy

3
c + 132y

4
c ,

q = 4x3
c + 10x

4
c + 12x

2
cyc + 52x

3
cyc + 96x

2
cy

2
c + 176xcy

3
c + 220y

4
c ,

r = 4x3
c + 13x

4
c + 64x

3
cyc + 264x

2
cy

2
c + 88y

3
c + 880xcy

3
c + 930y

4
c ,

and Bij ’s are non-negative, and (75) implies

B33 = J(2)(2)(�xc) = Φ(1),1(�xc),
B36 = J(2)(12)(�xc) = Φ(1),4(�xc),
B63 = J(12)(2)(�xc) = Φ(11),1(�xc),
B66 = J(12)(12)(�xc) = Φ(11),4(�xc).
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A 2×2 matrix
(

p 3q
q r

)
has eigenvalues λ = 3.17282866849 · · ·> 1 and λ2 = 0.249393708 · · ·.

In fact, they are the solutions of x2 − (p+ r)x+ pr − 3q2 = 0 .

Consider a 2×2 matrix B′ =
(

B33 B36

B63 B66

)
. Its characteristic polynomial f(x) = det(x I−B)

is

f(x) = x2−(B33+B66)x+(B33B66−B36B63) = (x−
1
2
(B33+B66))2−

1
4
(B33−B66)2−B36B63 .

(76)
Note that (75) implies

xc = Φ(1)(�xc) = B33 xc +B36 yc +Φ(1),0(�xc) � B33 xc +B36 yc + x2
c ,

yc = Φ(11)(�xc) = B63 xc +B66 yc +Φ(11),0(�xc) � B63 xc +B66 yc + x4
c ,

which further imply

0 � xa :=
1
2
(B33 +B66) � 1

2
((1− xc) + (1−

x4
c

yc
)) < 1,

1−B33 −B66 +B33B66 = (1−B33)(1−B66) � ( yc
xc

B36 + xc)(
xc
yc

B63 +
x4
c

yc
) > B36B63 .

Note also that Proposition 30 (v) implies that

B36 � x3
cyc and B63 � x4

c .

Using these estimates in (76) we find that f(x) is increasing on x � xa, symmetric with respect
to x = xa (hence in particular, f(−1) > f(−1 + 2xa) = f(1)), f(xa) � −B36B63 � −x7

cyc < 0,
and f(1) > 0 . Therefore the two eigenvalues λ3 and λ4 of B′ are real, distinct, and have absolute
values less than 1 .
The other two eigenvalues are 0, for which we have 2 independent left eigen vectors (0, 0, 0, 1, 0, 0)
and (0, 0, 0, 0, 1, 0).
Therefore, B = J (�xc) is diagonalizable by an invertible matrix, whose eigenvalues are λ, λ2, λ3,
λ4, 0, 0, and the eigenvalue λ which is largest in absolute value satisfies λ > 1 and all the other
eigenvalues have absolute values strictly less than 1 .

Denote the left eigenvector of B for λ by �vL = (vL,(1), vL,(11), vL,(2), vL,(3), vL,(4), vL,(12)) . It is
defined by

vL,(11)

vL,(1)
=

λ− p

q
=
3q

λ− r
,

vL,(2) =
1

λ−B33
(B13vL,(1) +B23vL,(11) +B63vL,(12))

vL,(3) =
1
λ
(B14vL,(1) +B24vL,(11) +B34vL,(2) +B64vL,(12)),

vL,(4) =
1
λ
(B15vL,(1) +B25vL,(11) +B35vL,(2) +B65vL,(12)),

vL,(12) =
1

λ−B66
(B16vL,(1) + B26vL,(11) +B36vL,(2)).

Obviously, we can take vL,(1) = 1 . λ is the larger solution of x2 − (p+ r)x+ pr− 3q2 = 0, hence
λ > p. Therefore, vL,(11) > 0 . Note that Proposition 30 (iv) implies

Bi,j > 0, i = 1, 2, j = 3, 4, 5, 6 .

Note also that λ > 1 > max{B33, B66} . Therefore vL,I > 0, I = (2), (3), (4), (12).

Finally, note that the right eigenvector of B for λ can be chosen to be




3q
λ− p
0
0
0
0



, hence has

positive (non-zero) (1)-component.
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(c) The explicit form (74) shows that Φ(1) and Φ(11) contain terms x2
(1) and x4

(1), respectively.

(d) We have already shown �xc ∈ Ξ4 ∩ R
Kres
+ and since xc > 0, �xc 
= �0.

(iii) Theorem 15 implies that there exists one and only one β0 ∈ R such that �xcan,Kres(β0) ∈ ∂D. To
prove that β0 is the critical point of the restricted model, it is sufficient to prove, from (CS2) and
(DA1) – (DA2), that

lim
n→∞

�Xn(�xcan,Kres(β0)) = �xc , (77)

and
xcan,Kres,I(β0) 
= 0, I ∈ Kres .

The latter obviously holds, because

�xcan,Kres(β0) = (e−β0 , e−2β0 , 0, 0, 0, 0).

Hence it suffices to prove (77).
Since R

Kres
+ ⊂ R

I4
+ is an invariant subset (Proposition 6 or Proposition 8), we may restrict (77) to

R
Kres
+ . Define

xn(x, y) = Xn,(1)(x, y, 0, 0, 0, 0), yn(x, y) = Xn,(11)(x, y, 0, 0, 0, 0),
�φ = (φ1, φ2); φ1(x, y) = Φ(1)(x, y, 0, 0, 0, 0), φ2(x, y) = Φ(11)(x, y, 0, 0, 0, 0).

Then (x0(x, y), y0(x, y)) = (x, y) and (xn+1, yn+1) = �φ ◦ (xn, yn), n ∈ Z+.
Next define

Ξ(2)
4 = {(x, y) ∈ R

2
+ | (x, y, 0, 0, 0, 0) ∈ Ξ4} = {(x, y) ∈ R

2
+ | x2 � y},

and
D(2) = {(x, y) ∈ Ξ(2)

4 | (x, y, 0, 0, 0, 0) ∈ D},
where D ⊂ R6

+ is as in (31). Denote by D(2)o, D(2)c, ∂D(2), the interior, exterior, and boundary of
D(2) in Ξ(2)

4 .
Note that

(e−β0 , e−2β0) ∈ ∂D(2).

To prove (77), it then suffices to prove

lim
n→∞(xn(x, y), yn(x, y)) = (xc, yc), (x, y) ∈ ∂D(2). (78)

The definition and Theorem 15 implies that these sets are invariant sets of (φ1, φ2) and that

D(2) = {(x, y) ∈ Ξ(2)
4 | sup

n∈Z+

max{xn(x, y), yn(x, y)} < ∞}

= {(x, y) ∈ Ξ(2)
4 | sup

n∈Z+

max{xn(x, y), yn(x, y)} � 1},

and
D(2)o = {(x, y) ∈ Ξ(2)

4 | lim
n→∞max{xn(x, y), yn(x, y)} = 0}.

The explicit form (74) and Theorem 15 also imply, by an elementary argument (as in [6, Proposition

3.2 (2)]), that there exist a constant c, satisfying 0 < c <
1
2
, and a continuous sitrictly decreasing

function p : [0, c]→ R+, satisfying p(0) <
1
2
and p(c) = 0, such that

∂D(2) = {(x, p(x)) | x ∈ [0, c]}. (79)

The Jacobian of the map (x, y)→ �φ(x, y) is, by (74),

detJ (2)(x, y) = det
(
∂(φ1, φ2)
∂(x, y)

(x, y)
)

= 8x4 + 62x5 + 165x6 + 192x7 + 90x8 + 128x4y + 432x5y + 516x6y + 360x7y
+ 528x3y2 + 2088x4y2 + 3996x5y2 + 4770x6y2 + 176xy3 + 2552x2y3

+ 10032x3y3 + 25200x4y3 + 35040x5y3 + 1860xy4 + 11538x2y4 + 56640x3y4

+ 113520x4y4 + 3168xy5 + 69912x2y5 + 206640x3y5 + 50376xy6

+ 201780x2y6 + 11616y7 + 62400xy7 − 22440y8.

We note the following fact proved by an elementary argument in [6, Proposition 3.3].
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Lemma 32 If there exists ε > 0 such that

J (2)(x, y) > ε, (x, y) ∈ ∂D(2), (80)

then, φ1(x1, y1) < φ1(x2, y2) holds for any (x1, y1) ∈ ∂D(2) and (x2, y2) ∈ ∂D(2) satisfying x1 < x2 .

Remark. The proof of [6, Proposition 3.3] applies to the present case. The proof there (after [6, (3.7)])
uses only (79) and the fact that φ1 and φ2 are polynomials of positive coefficients. ✸

To prove (80), note that the only negative term in J (2)(x, y) is −22440y8. If (x, y) ∈ ∂D(2), then
y = p(x) < p(0) < 1/2, hence 22440y8 < 11220y7 < 11616y7. With other positive terms in J (2)(x, y),
(80) follows easily.

We are ready to prove (78). Let (x, y) ∈ ∂D(2), and assume that {(xn(x, y), yn(x, y)) | n ∈ Z+}
accumulates at (xa, ya) 
= (xc, yc). Let (xb, yb) = �φ(xa, ya). Since Theorem 31 implies that (xc, yc) is
the only fixed point in Ξ(2)

4 \ {�0}, it follows that xb 
= xa .

Assume that xb > xa. For ε > 0 denote the ε neighborhood of (x, y) by Uε(x, y). Since �φ is continuous,
for any ε > 0 there exists δ > 0 such that �φ(Uδ(xa, ya)) ⊂ Uε(xb, yb). Taking ε small enough so that
(x′, y′) ∈ Uε(xb, yb) implies x′ > xm := (xa+xb)/2, we therefore see that there exists δ > 0 such that
(x, y) ∈ Uδ(xa, ya) ∩ ∂D(2) implies φ1(x, y) > xm. Therefore if φ1(x, y) > x, then Lemma 32 implies
φ1(�φ(x, y)) > φ1(x, y) (> xm), hence by induction,

φ1(�φn(x, y)) > xm , n ∈ N, (x, y) ∈ Uε(xa, ya) ∩ ∂D(2).

By assumption that {(xn(x, y), yn(x, y)) | n ∈ Z+} accumulates at (xa, ya), there exists a positive
integer N such that (xN (x, y), yN (x, y)) ∈ Uε(xa, ya) ∩ ∂D(2). Therefore xn(x, y) > xm , n = N +
1, N + 2, · · ·, which contradicts the assumption that {xn(x, y) | n ∈ Z+} accumulates at xa < xm .

Similar argument also holds for if we assume xb < xa. Therefore (xc, yc) is the only point that
{(xn(x, y), yn(x, y)) | n ∈ Z+} accumulates, which proves (78).

✷

Theorem 31 and the results in Section 3.2 imply the following results on the asymptotic behaviors of
restricted self-avoiding paths on the 4 dimensional pre-Sierpiński gasket.

Theorem 33 Let �xc = (xc, yc, 0, 0, 0, 0) ∈ R6
+ and βc,res = βc,Kres ∈ R be the constants defined in Theo-

rem 31. Then the following holds for the restricted self-avoiding paths on the 4 dimensional pre-Sierpiński
gasket.

(i) If �x ∈ Dom(�xc), then the following hold.

For I ∈ Kres = {(1), (11)}, the joint distribution of scaled generalized path length (λ−ns(1) , λ
−ns(11))

under µ�x,n,I converges weakly to a Borel probability measure p∗�x,I on R
6 as n → ∞.

The generating function ϕ∗
�x,I , defined by

ϕ∗
�x,I(�t) =

∫ ∞

0

e
�t·�ξp∗�x,I [d�ξ], �t ∈ C

6 ,

is an entire function in �t, and the set of functions (ϕ∗
�x,(1) , ϕ∗

�x,(11)) are uniquely determined by (25)
for d = 4 .

If �x ∈ Dom(�xc)∩Ξ4 and I ∈ Kres , then the distribution of λ−nL(w), the scaled length of w ∈ W
(n)
I ,

under µ�x,n,I converges weakly to a Borel probability measure p̄∗�x,I , which has a C∞ density ρ̄∗�x,I .

In particular, ρ̄∗�x,(1)(ξ) > 0, ξ > 0 .
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(ii) For I ∈ I4 = {(1), (11), (2), (3), (4), (12)} ,

lim
n→∞ZKres,n,I(β) =

{
0, β > βc,res ,
xc,I , β = βc,res ,

and

lim
n→∞

4∑
i=1

ZKres,n,(i)(β) =∞, β < βc,res .

(iii) The number Nres(k) = NKres(k) of restricted self-avoiding paths of length k starting from 0 satisfies

lim
k→∞

1
k
logNres(k) = βc,res .

(iv) The exponent for mean square displacement for the restricted model is dw =
log λ
log 2

= 1.6657696 · · ·,
in the sense that

lim
k→∞

1
log k

logEres,k[|w(k)|s dw ] = s, s � 0,

where Eres,k is the expectation with respect to the probability measure with equal weight on length k
restricted self-avoiding paths starting at O.

Remark. The convergence of µ�x,n,I and the properties of the limit measure holds both for the full model
and the restricted model (if �x ∈ Dom(�xc)), because they hold independently of (CS2).

✸
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Sierpiński gasket, Probability Theory and Related Fields 93 (1992) 273–284.

[8] T. Hattori, H. Nakajima, Transition density of diffusion on the Sierpiński gasket and extension of
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