Renormalization group approach to an extension of the law of iterated logarithms for one-dimensional (non-Markovian) stochastic chain

RIMS, 2003.9.10
Kumiko HATTORI (Shinshu U.)
Tetsuya HATTORI (Nagoya U.)

Tetsuya Hattori, Random walks and renormalization groups - an introduction to mathematical physics, Kyoritsu publishing, 2004.3, to appear (in Japanese).

1. Introduction

- Expectation on 'Mathematics' of RG

2. Law of iterated logarithms (LIL)

- Asymptotic behavior ('exponent') of paths

3. Main results

- RG, construction of stochastic chains, generalized LIL

4. Displacement exponent for self-repelling walk

§1. Introduction.

- 'Mathematics' of RG (still a long way to go)
- a mathematical tool (calculus), and structure
- Return to a simplest model
scale change of the accuracy of observation
- Stochastic chains (probability measure on the set of paths) on \mathbb{Z}, with 1-dimensional RG (nearest neighbor jumps)
- 'A diet coke is good after chinese dishes.' (K.R.Ito)

We also have corresponding results on the following:

- Continuum limit continous processes
- Chains and processes on the Sierpinski gasket Hambly, K.Hattori, T.Hattori, PTRF 124 (2002) K.Hattori, T.Hattori, preprint, 2003

§2. Law of iterated logarithms (LIL).

 Theorem (Khintchine, 1924). Let $W_{k}, k \in \mathbb{Z}_{+}$, be SRW on \mathbb{Z} with $W_{0}=0$. Then$\mathrm{P}\left[\varlimsup_{k \rightarrow \infty} \frac{W_{k}}{\sqrt{k \log \log k}}=1\right]=1$.

- $W_{k} \sim k^{1 / 2}$ (as for CLT and displacement exponent). $\log \log$ correction is automatic from RG - The exponent $1 / 2$ is a consequence of fluctuations, hence path fluctuates around the average $k^{1 / 2}$

What is new in our work?

- Previous works - exponent $\nu=1 / 2$

We generalize to all $\underline{\nu}$ - existence proof of a chain with exponent ν.

- Decimation for SRW known. (F.B.Knight, 1962) We do not use Markov properties. (Note $\nu \neq 1 / 2$ suggests non-Markov.)
RG as a new math. to analyze non-Markov proc.

Remark.

Why LIL and not displacement exponent?
$\mathrm{E}\left[w(k)^{s}\right] \sim k^{\nu s}$
For Markov chains displacement exponents are easier because of independence of increments $W_{k+1}-$ W_{k}, but we are working on non-Markovian chains!

- Displacement exponent for self-repelling walks (K.Hattori, T.Hattori, 2003)
§3. Main results.
Path on \mathbb{Z}.
$L \in \mathbb{Z}$ or $L=\infty$ (length).
$w:\{0,1, \cdots, L\} \rightarrow \mathbb{Z}$;
$w(0)=0,|w(i)-w(i-1)|=1, i=1, \cdots, L$

Stochastic chain $=$ Prob. measure on the set of $L=\infty$ paths

1. Decimation
2. Analysis of RG
3. Construction of chains consistent with RG
4. Asymptotics from RG (generalized LIL)
5. Decimation. Scale change of the accuracy of observation
$Q: w \mapsto Q w ;(Q w)(i)=\frac{1}{2} w\left(T_{i}(w)\right) ; T_{0}(w)=0$,
$T_{i+1}(w)=\inf \left\{j>T_{i}(w) \mid w(j) \in 2 \mathbb{Z} \backslash\left\{w\left(T_{i}(w)\right)\right\}\right\}$

'Fine structures' lost by Q (added by Q^{-1}): \tilde{W}_{1} : set of paths; $L<\infty$, ending at 2 , which do not hit -2 .

$$
\Phi_{1}(z)=\sum_{w \in \tilde{W}_{1}} b_{1}(w) z^{L(w)}=: \sum_{k=0}^{\infty} c_{k} z^{k}
$$

(Note $c_{0}=c_{1}=0$.)

Assumptions on $b_{1}\left(\right.$ or $\left.c_{k}\right)$:

(i) $b_{1}(w) \geqq 0$
(ii) radius of convergence $r>0$
(iii) $c_{2}>0$ and $\exists k \geqq 3 ; c_{k}>0$

Proposition.

(i) \exists ! $x_{c} ; \Phi_{1}\left(x_{c}\right)=x_{c}, 0<x_{c}<r$
(ii) $\lambda:=\Phi_{1}^{\prime}\left(x_{c}\right)>2$
$\left(\operatorname{SRW}: \Phi_{1}(z)=\frac{x^{2}}{1-2 x^{2}}, x_{c}=1 / 2, \lambda=4\right)$
RG: the dynamical system determined by Φ_{1} $\Phi_{n+1}=\Phi_{1} \circ \Phi_{n}, n=1,2,3, \cdots$
Note $\Phi_{n}(z)=\sum_{w \in \tilde{W}_{n}} b_{n}(w) z^{L(w)} ; \quad \tilde{W}_{n}: 0 \rightarrow 2^{n},-\mathbb{8}^{n}$

- Representation in the parameter space of the scale change (addition of fine structure $\tilde{\mathcal{W}}_{1}$)

2. Analysis of RG.

$\underline{\mathrm{P}}_{n}[\{w\}]:=b_{n}(w) x_{c}{ }^{L(w)-1}$ defines prob. meas. on \mathcal{W}_{n}
$\tilde{\mathrm{P}}_{n}$: scaled length distribution on \tilde{W}_{n};
$\int e^{-s \xi} \tilde{\mathrm{P}}_{n}[d \xi]=x_{c}^{-1} \Phi_{n}\left(e^{-\lambda^{-n} s} x_{c}\right)$
$\left(=\sum_{w \in \tilde{W}_{n}} e^{-s \lambda^{-n} L(w)} \mathrm{P}_{n}[\{w\}]\right)$
Theorem. $\quad \exists \tilde{\mathrm{P}}_{*} ; \mathrm{P}_{n} \rightarrow \mathrm{P}_{*}$. Additional estimates on rate of convergence and limitting distributions such as:
(i) $\exists \rho(\xi) d \xi=\tilde{\mathrm{P}}_{*}[d \xi], C^{\infty}$, positive.
(ii) $\nu=\log 2 / \log \lambda$,
$-C \leqq \varliminf_{x \rightarrow 0} x^{\nu /(1-\nu)} \log \tilde{\mathrm{P}}_{*}[[0, x]] \leqq \varlimsup$
$x>0$
Note $\exists \rho(\xi)$ implies non-deterministic (non-trivial). $k \sim \lambda^{n} \Leftrightarrow x=2^{n} \quad \Rightarrow \quad x \sim k^{\nu}$

3. Chains consistent with RG.

$\left(\tilde{\mathcal{W}}_{n}, \mathrm{P}_{n}\right)$: paths with fixed endpoints. \leftrightarrow
Chain: meas. on infinite length path (LIL considers limit for each path) with pos. at fixed length W_{k} measurable
$\tilde{W}_{n}^{r}: \tilde{W}_{n}$ with $w \mapsto-w$
Prob. meas. $\mathrm{P}_{r, n}$ on $\tilde{W}_{n}^{r} ; \mathrm{P}_{r, n}[\{w\}]=\mathrm{P}_{n}[\{-w\}]$ Theorem (Hattori-Hattori, 2003).
$\exists\left\{W_{k}\right\} ;(\forall w ; L(w)=k)\left(\forall n ; 2^{n}>\max _{0 \leq j<k}|w(j)|\right)$
$\mathrm{P}\left[W_{j}=w(j), 0 \leqq j \leqq k\right]$
$=\frac{1}{2} \mathrm{P}_{n}\left[\left\{w^{\prime} \in \tilde{W}_{n} \mid w^{\prime}(j)=w(j), 0 \leqq j \leqq k\right\}\right]$
$+\frac{1}{2} \mathrm{P}_{r, n}\left[\left\{w^{\prime} \in \tilde{W}_{n}^{r} \mid w^{\prime}(j)=w(j), 0 \leqq j \leqq k\right\}\right]$

RG serves as consistency condition!

4. Asymptotics from RG (generalized LIL).

Theorem (Hattori-Hattori, 2003).
Let $\nu=\frac{\log 2}{\log \lambda} ; \lambda=\Phi^{\prime}\left(x_{c}\right)$. Then $\exists C_{ \pm}>0 ;$

$$
\mathrm{P}\left[C_{-} \leqq \varlimsup_{k \rightarrow \infty} \frac{\left|W_{k}\right|}{k^{\nu}(\log \log k)^{1-\nu}} \leqq C_{+}\right]=1
$$

Idea of proof.

- RG estimates on hitting time of $2^{n} \rightarrow \mathrm{P}\left[W_{k}<C 2^{n}\right]$.
- Prob. 1 statement from (modified) Borel-Cantelli Th. for scale parameter n.
Lower bd: BC2 (independence among scales). cf. Previous results on SRW: BC2 for step number $k \leftarrow$ requires Markov property.
$\left\{A_{k}\right\} \perp, \sum_{k=1}^{\infty} \mathrm{P}\left[A_{k}\right]=\infty \rightarrow \mathrm{P}\left[\varlimsup_{k \rightarrow \infty} A_{k}\right]=1$
§4. Displacement exponent for self-repelling walk.
SRW - Markov, $\nu=1 / 2 ;\left|W_{k}\right| \sim k^{\nu}$
Self-avoiding path - non-Markov extreme, $\nu=1$ on \mathbb{Z}
- continous interpolation?

Theorem (Hattori-Hattori, 2003). \exists measures on $L=\infty$ path $\mathrm{P}_{u}, u \in[0,1]$;

1. $u=1$: SRW on \mathbb{Z} (or Sierpiński gasket)
2. $u=0$: SAP
3. Displacement exponent
$\lim _{k \rightarrow \infty} \frac{1}{\log k} \log \mathrm{E}_{u}\left[\left|W_{k}\right|^{s}\right]=s \nu_{u}, s \geqq 0$, is conti. in u

Construction for measures on \mathbb{Z} :
Generating function of L for $\operatorname{SAP} \Phi_{0,1}(z)=z^{2}$ Generating function for SRW
$\Phi_{1,1}(z)=\Phi_{1}(z)=\frac{z^{2}}{1-2 z^{2}}$
Interpolation! $\Phi_{u, 1}(z)=\frac{z^{2}}{1-2 u^{2} z^{2}}$
$\nu_{u}=\frac{\log 2}{\log \lambda_{u}}, \lambda_{u}=\Phi_{u, 1}^{\prime}\left(x_{c, u}\right), x_{c, u}=\Phi_{u, 1}\left(x_{c, u}\right)$
displacement exponent \leftarrow reflection principle \leftarrow explicit form of weights

