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Introduction

e Expectation on ‘Mathematics’ of RG

Law of iterated logarithms (LIL)
e Asymptotic behavior (‘exponent’) of paths

Main results

e RG, construction of stochastic chains, general-
ized LIL

Displacement exponent for self-repelling walk



§1. Introduction.

e ‘Mathematics’ of RG (still a long way to go)

— a mathematical tool (calculus), and structure
e Return to a simplest model

scale change of the accuracy of observation

— Stochastic chains (probability measure on the
set of paths) on Z, with 1-dimensional RG (nearest
neighbor jumps)

e ‘A diet coke is good after chinese dishes.” (K.R.Ito)

We also have corresponding results on the follow-
ing:

e Continuum limit continous processes

e Chains and processes on the Sierpinski gasket
Hambly, K.Hattori, T.Hattori, PTRF 124 (2002)
K.Hattori, T.Hattori, preprint, 2003
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§2. Law of iterated logarithms (LIL).

Theorem (Khintchine, 1924). Let Wy, k € Z.,
be SRW on Z with Wy = 0. Then

P[ Tim W _, | =1. O
k—oo \/klog log k

o Wi ~ k'/? (as for CLT and displacement expo-
nent). loglog correction is automatic from RG — The
exponent 1/2 is a consequence of fluctuations, hence
path fluctuates around the average k1/2
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Iog“|w(k)| Iog“|w(k)|

0 log k 0 log k



What is new in our work?

e Previous works — exponent v = 1/2

We generalize to all v — existence proof of a chain
with exponent v.

e Decimation for SRW known. (F.B.Knight, 1962)
We do not use Markov properties. (Note v # 1/2
suggests non-Markov.)

RG as a new math. to analyze non-Markov
proc.

Remark.

Why LIL and not displacement exponent?
Elw(k)® ] ~ k"

For Markov chains displacement exponents are eas-
ier because of independence of increments W1 —
Wy, but we are working on non-Markovian chains!

e Displacement exponent for self-repelling walks
(K.Hattori, T.Hattori, 2003)


Hattori

Hattori


§3. Main results.

Path on Z.

L €Z or L = (length).
w {O,l,"',L}—)Z;

w(0) =0, jw@) —wi—1)|=1,i=1,

0 1

‘>
5
<

L

w(i)



Stochastic chain = Prob. measure on the set of
L = oo paths

1. Decimation

2. Analysis of RG

3. Construction of chains consistent with RG

4. Asymptotics from RG (generalized LIL)

1. Decimation. Scale change of the accuracy of
observation

Q: wr— Qu; (Qw)(i) = zw(T;(w)); To(w) =0,
Tit1(w) = int{j > Ti(w) | w(j) € 2Z\{w(Ti(w))}}

-2 -Il 0 ?. 2W(i)

N

DO | —
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‘Fine structures’ lost by @ (added by Q~'):
W7i: set of paths; L < oo, ending at 2, which do
not hit —2.

W \7V1/2 W' /2
0 1W(i) ;(1| OI 1 '1.<9. 1W(i)
i >
i
-1I lO | 1




weW, k=0

(Note co =c1 =0.)

Assumptions on b; (or cg):

(i) b1(w) 20

(ii) radius of convergence r > 0
(iii) co > 0 and Jk =2 3; ¢ > 0

Proposition.
(i) Aae; Pr(ze) =2, 0 < e <71
(ii)) X := ) (x.) > 2 &

(SRW: @4 (2) = %, r.=1/2, A =4)

RG: the dynamical system determined by &4

(I)n—i—l = 0, O(I)na n=123,---

Note @ (2) = »  bn(w)z"™;  Wy: 0— 27, —2"
wEVVn

— Representation in the parameter space of the scale

change (addition of fine structure W)
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2. Analysis of RG.
P, {w}]:= by (w)z, L)1 defines prob. meas. on
Wh,

~

P,,: scaled length distribution on W,,;
/e_sflsn[ dé | =a1d, (e "ox,)
(=Xuew, ¢ HWP[{w}])

Theorem. dP,; P, — P,. Additional estimates
on rate of convergence and limitting distributions such
as:

(1) Ip(€)de = P.[dE ], C, positive.

(ii) v = log 2/ log A,

—C < lim 2"/ logP,[[0,2]] £ T —C’,
z—0

x>0 &

A

Note dp(£) implies non-deterministic (non-trivial).
E~ A & 2=2" = x~Fk
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3. Chains consistent with RG.

(W, Py): paths with fixed endpoints. «

Chain: meas. on infinite length path (LIL considers
limit for each path) with pos. at fixed length W} mea-
surable

Wr: W, with w— —w

Prob. meas. P,.,, on W7; P, ,[ {w} ] = Pp[ {—w} ]
Theorem (Hattori—Hattori, 2003).

H Wi} Vw; L(w) = k)(Vn; 2" > max |w(j)|)

0Sj<k
PIW; =w(j), 0=j=k]
= 1Pn[{w/EWn‘w,( ) =w(j), 0=
—|—%Pr,n[{w’€ﬁ/,";]w( ) =w(j), 0
&

RG serves as consistency condition!
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4. Asymptotics from RG (generalized LIL).

Theorem (Hattori—Hattori, 2003).

log 2
Let v = —2 : A= ®'(x.). Then IC4 > 0;
log A
P[C_ < Tim Vi <C,]=1 O

~ k—oo k¥(loglog k)t—¥

Idea of proof.

e RG estimates on hitting time of 2" — P[ W}, < C2™ |.
e Prob. 1 statement from (modified) Borel-Cantelli Th.
for scale parameter n.

Lower bd: BC2 (independence among scales). cf. Pre-
vious results on SRW: BC2 for step number k « re-
quires Markov property.

{A} L, Y7 P[Ax] =00 — P[ Tim Az ] =1

k— oo



Hattori



34. Displacement exponent for self-repelling

walk.

SRW — Markov, v = 1/2; |Wi| ~ k"

Self-avoiding path — non-Markov extreme, v = 1 on Z
e continous interpolation?

L.

Theorem (Hattori—Hattori, 2003). 3 measures
on L = oo path P, u € [0, 1];

u = 1: SRW on Z (or Sierpinski gasket)
u=0: SAP
Displacement exponent

1
I log E,, *l=svy,s20,
kl—{gologk og By [Wi|? | = sy, s 20

1S contl. In u

Construction for measures on Z:
Generating function of L for SAP ®¢ 1(z) = 2°
Generating function for SRW

(131,1(2) E— (I)l(Z) &

T 1922
22

1 — 2u?z2
Vu = log)\ 3 >\u — (I)f/u,,l(xc,u)a Le,u — q)u,l(xc,u)

displacement exponent «— reflection principle < ex-
plicit form of weights

Interpolation! ®,, 1(z) =

log 2
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