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ABSTRACT

We study a method of successive approximation to
dφ

dx
(x) = −φ(x)2, a simplest first order non-

linear ordinary differential equation whose solutions have moving singularities. We give a sufficient
condition for a series of approximate solutions φn, n = 0, 1, 2, · · ·, to have a scaling limit, namely,
φ(x) = lim

n→∞ q−1
n φn(q−1

n x) exists, where qn = φn(0). In other words, the approximation sequence

φn(x), n = 0, 1, 2, · · ·, approaches the exact solution x−1 in an asymptotically conformal way:
φn(x) ≈ qnφ(qnx) as n → ∞.

The crucial condition for the scaling limit to exist is the existence of the limit lim
n→∞ qn+1/qn .

For a certain choice of φ0, the problem is related to a problem of random sequential bisection,

through which we find lim
n→∞ q1/n

n = e1/c, where x = c is the unique positive solution to x log
2e

x
= 1,

x > 1 . Numerical calculations suggest that all the conditions for the scaling limit to exist are
satisfied for this choice of φ0 .

1 Introduction.

Consider a simplest first order non-linear ordinary differential equation

dφ

dx
(x) = −φ(x)2, x > 0 .(1.1)

A solution φ(x) = (x − c)−1 has a singularity, whearas (1.1) has no singularities. The singularity
point x = c is an aribtrary constant, hence it is called a moving singularity. We may, without loss
of generality put c = 0, to fix the arbitrary constant c. Equivalently, we may impose boundary
condition at infinity:

φ(x) = x−1 + o(x−2), x → ∞,(1.2)

to obtain a unique solution φ(x) = x−1 in C1((0,∞)).
Applying the method of successive approximation, we obtain a sequence φn, n = 0, 1, 2, · · ·, of

functions defined recursively, by

dφn+1

dx
(x) = −φn(x)2, x > 0, φn(x) = x−1 + o(x−2), x → ∞, n = 0, 1, 2, · · · ,
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or, equivalently,

φn+1(x) =
∫ ∞

x
φn(x′)2 dx′, x > 0, n = 0, 1, 2, · · · ,(1.3)

with an initial approximation

φ0(x) = x−1 + o(x−2), x → ∞.(1.4)

Successive approximation (1.3) gives a sequence of functions converging to a solution φ of the
differential equation. We are interested in the ‘rate of convergence’ of successive approximation
to a solution near the moving singularity. We go into this problem by studying the scaling limit,
namely, the existence problem of φ̄(z) = lim

n→∞ q−1
n φn(q−1

n z), for a sequence of positive numbers qn,
n = 0, 1, 2, · · ·, which diverges to ∞ as n → ∞. (The scaling factor for x and the scaling factor for
φn should be equal, because φn(x) ≈ x−1 for very large n and x somewhat near 0 .) Possibility
of existence of scaling limits for successive approximations to differential equations with moving
singularities seems not to have been studied.

To be specific, let us denote by C a set of entire functions φ : C → C, satisfying φ(x) =
x−1 + o(x−2), x → +∞, whose coefficients in the Maclaurin series have alternating signs;

φ(z) =
∞∑

k=0

(−1)kakz
k, ak ≥ 0, k = 0, 1, 2, · · · .

In Section 2 we prove the following.

Theorem 1.1. Let φ0 ∈ C and let φn, n = 0, 1, 2, · · ·, be a sequence defined recursively by (1.3)
on [0,∞). Then for each n, φn are analytically continued to C and φn ∈ C holds.

Furthermore, let the coefficients a0,k, k = 0, 1, 2, · · ·, in

φ0(z) =
∞∑

k=0

(−1)ka0,kz
k,

satisfy a0,k ≤ ak+1
0,0 , k = 1, 2, 3, · · ·. Then if the sequence qn, n = 0, 1, 2, · · ·, defined by

qn = φn(0), n = 0, 1, 2, · · · .(1.5)

is increasing in n, and the sequence of the ratios of successive terms has a limit greater than 1;

∃ρ = lim
n→∞

qn+1

qn
> 1,(1.6)

then the sequence of the entire functions defined by

φ̄n(z) = q−1
n φn(q−1

n z), n = 0, 1, 2, · · · ,(1.7)

converges uniformly on compact sets in C to an entire function φ̄(z) =
∞∑

k=0

(−1)kαkz
k defined by

α0 = 1, αk =
1

kρk+1

k∑
j=1

αk−jαj−1, k = 1, 2, 3, · · · .(1.8)
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This Theorem gives a sufficient condition for the sequence of successive approximations to exhibit
a scaling limit.

The conditions on the coefficients in the definition of the class C and in Theorem 1.1 may be
stronger than necessary. However, as we will see below, we have examples of interest satisfying
these conditions, so we impose them to avoid technical complications. The condition (1.6) on qn,
on the other hand, seems more essential and deserve further study. In fact, existence of the limit
in (1.6) is still open, but we have some results for the value of ρ, assuming its existence.

For a > 1 let Oa be a set of non-negative valued functions φ : [0,∞) → [0,∞) defined on
non-negative reals which has an expression

φ(x) =
∫ ∞

0
e−xt(1 − F (t))dt , x ≥ 0,(1.9)

where F : [0,∞) → [0, 1] is an increasing right continuous function satisfying F (x) ≤ Cxa, x > 0,
for some positive constant C. (In particular, we impose φ(0) < ∞, which implies lim

x→∞F (x) = 1 .)
In Section 3 we prove the following.

Theorem 1.2. (i) Let a > 1 and φ0 ∈ Oa, and let φn, n = 0, 1, 2, · · ·, be a sequence defined
recursively by (1.3) on [0,∞). If 0 < � < �s(a), then lim

n→∞ �−nφn(�−nx) = x−1, x > 0, and

lim
n→∞ �−nφn(0) = ∞ hold. Here

�s(a) =

{
((a + 1)/2)1/a, 1 < a < c − 1,

e1/c, a ≥ c − 1,
(1.10)

and c is the unique solution to c log
2e

c
= 1 with c > 1 .

(ii) Let 1 < a < c − 1 and φ0 ∈ Oa , and assume that there exist positive constants C ′, a′,
δ, satsfying a′ ≥ a, such that the function F in (1.9) correpsonding to φ = φ0 satisfies
F (x) ≥ C ′xa′

for 0 ≤ x ≤ δ, then for � > �s(a′), and for each x ≥ 0, lim
n→∞ �−nφn(�−nx) = 0 .

Numerically, c − 1 = 3.31107040700 · · · and e1/c = 1.2610704868 · · ·.
Theorem 1.1 and Theorem 1.2 imply the following result, which describes the meaning of

Theorem 1.2 in terms of Theorem 1.1.

Corollary 1.3. Assume that φ0 : C → C is in C and its restriction on [0,∞) is in Oa for
some a > 1. Let φn, n = 0, 1, 2, · · ·, be a sequence defined recursively by (1.3) on C. Then if the
assumptions in Theorem 1.1 hold, then ρ ≥ �s(a) .

If, in addition, 1 < a < c−1 and there exist positive constants C ′ and δ such that the function
F in (1.9) correpsonding to φ = φ0 satisfies F (x) ≥ C ′xa for 0 ≤ x ≤ δ, then ρ = �s(a).

Proof of Corollary 1.3 assuming Theorem 1.1 and Theorem 1.2. The assumption (1.6) implies

lim
n→∞φn(0)1/n = lim

n→∞ q1/n
n = ρ.

Theorem 1.2 for x = 0 therefore implies ρ ≥ �, if 0 < � < �s(a), hence ρ ≥ �s(a).
The second part is proved similarly using the second part of Theorem 1.2. �

In Section 3 we also give a sufficient condition for the increasing property of qn, n = 0, 1, 2, · · ·
(Proposition 3.3).

3



Corollary 1.3 essentially determines the value of ρ (assuming its existence) in (1.6) for the
case 1 < a < c − 1, The case a ≥ c − 1 seems harder. However, the following considerations on a
specific choice of φ0 suggest that ρ = e1/c for large a. Put

φ0(z) =
1
z
(1 − exp(−z)), z ∈ C.(1.11)

Note that this choice of φ0 is both in C and in Oa for any a > 1, because

1
z
(1 − exp(−z)) =

∞∑
k=0

(−1)k
1

(k + 1)!
zk, z ∈ C,

and

1
x

(1 − exp(−x)) =
∫ 1

0
e−xt dt, x > 0 .

In fact, with this choice, all the assumptions in Theorem 1.1, except perhaps (1.6) are easily seen
to hold. Though we were unable to find a proof for (1.6), we have the following result.

Theorem 1.4. Let φn, n = 0, 1, 2, · · ·, be a sequence defined recursively by (1.3) on [0,∞), with
φ0 as in (1.11). Then qn is increasing in n, and lim

n→∞ q1/n
n ≥ e1/c, where c is as in Theorem 1.2.

Moreover, if (1.6) holds, then lim
n→∞ q1/n

n = e1/c, in particular, ρ = e1/c.

The specific choice (1.11) in this Theorem is motivated by studies in random sequential bisection
of a rod and binary search trees [3, 7]. We give a proof of Theorem 1.4 in Section 4. Numerical
calculations suggest that qn+1/qn is decreasing in n, hence (1.6) does hold. We give details in
Appendix. Thus we conclude with the following Conjecture.

Conjecture 1.5. Let φn, n = 0, 1, 2, · · ·, be a sequence defined recursively by (1.3) on C, with
φ0 as in (1.11). Then lim

n→∞ φn(0)−1φn(φn(0)−1z) = φ̄(z) uniformly on compact sets in C, where

φ̄(z) =
∞∑

k=0

(−1)kαkz
k is given by (1.8).

Acknowledgement. The authors would like to thank Prof. K. Uchiyama for comments and
discussions, especially for a proof of Lemma 3.5 and Lemma 4.3. T. Hattori would also like to
thank Prof. Y. Itoh for describing his results, which partly motivated the present work.
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Sports and Culture.

2 Scaling limit.

Here we prove Theorem 1.1.
First we prove by induction that φn ∈ C for all n = 0, 1, 2, · · ·. Assume that φn ∈ C for

a non-negative integer n. φn+1(x) = x−1 + o(x−2), x → ∞, follows directly from (1.3) and

φn(x) = x−1 + o(x−2). Also
∫ ∞

0
φn(x)2 dx < ∞ exists, and we can rewrite (1.3) as

φn+1(x) =
∫ ∞

0
φn(x′)2 dx′ −

∫ x

0
φn(x′)2 dx′, x ≥ 0 .(2.1)
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The integrand in the last term is entire, hence we can analytically continue φn+1 to the whole
complex plain C as an entire function, using this expression. Put

φn(z) =
∞∑

k=0

(−1)kan,kz
k, z ∈ C, n = 0, 1, 2, · · · .

Inserting this in (1.3) we find

an+1,0 = φn+1(0) = qn+1 =
∫ ∞

0
φn(x)2dx (> 0), n = 0, 1, 2, · · · ,(2.2)

and

an+1,k =
1
k

k∑
j=1

an,k−jan,j−1 (≥ 0), k = 1, 2, 3, · · · , n = 0, 1, 2, · · · .(2.3)

This proves that φn+1 ∈ C. By induction, φn ∈ C for all n.
Let us introduce a notation which we use throughout this section. For r > 0, let Mr be a map

on a space of infinite sequences

Mr : a = {ak | k = 0, 1, 2, · · ·} �→ Mr(a) = {Mr(a)k | k = 0, 1, 2, · · ·}
defined by Mr(a)0 = 1 and

Mr(a)k =
1

krk+1

k∑
j=1

ak−jaj−1 , k = 1, 2, 3, · · · .(2.4)

For sequences a = {ak | k = 0, 1, 2, · · ·} and b = {bk | k = 0, 1, 2, · · ·} we write a ≤ b if ak ≤ bk,
k = 0, 1, 2, · · ·. Obviously we have, for a non-negative sequence a,

Mr(a) ≥ Mr′(a), if 0 < r ≤ r′.(2.5)

Define α(r) = {α(r)k | k = 0, 1, 2, · · ·} by

Mr(α(r)) = α(r).(2.6)

Then α = {αk | k = 0, 1, 2, · · ·} in (1.8) is α = α(ρ).
Next we assume all the assumptions in Theorem 1.1. In particular, we assume an,0 = qn ≤

qn+1 = an+1,0. Then, by induction in n using (2.2) we see that

an,k ≤ ak+1
n,0 , k = 0, 1, 2, · · · , n = 0, 1, 2, · · · .(2.7)

In fact, we assumed this for n = 0 in Theorem 1.1. Assume that (2.7) holds for some n. Then
using (2.3)

an+1,k ≤ ak+1
n,0 ≤ ak+1

n+1,0 , k = 1, 2, 3, · · · .
Hence (2.7) holds also for n + 1. Put

φ̄n(z) =
∞∑

k=0

(−1)kᾱn,kz
k, z ∈ C, n = 0, 1, 2, · · · .

Then (1.7) implies

ᾱn,k = q−k−1
n an,k, k = 0, 1, 2, · · · ,(2.8)

5



which, with (2.3) and (2.4), satisfies

ᾱn+1 = Mqn+1/qn
(ᾱn), n = 0, 1, 2, · · · ,(2.9)

where we put ᾱn = {ᾱn,k | k = 0, 1, 2, · · ·}.
We now prove the following (2.10) and (2.11):

{φ̄n | n = 0, 1, 2, · · ·} is a set of uniformly bounded and equicontinuous functions
on {z ∈ C | |z| ≤ 1/2}.(2.10)

lim
n→∞ ᾱn,k = αk, k = 0, 1, 2, · · · ,(2.11)

Applying a standard argument using Ascoli–Arzelà Theorem, we see that (2.10) and (2.11) imply
that φ̄n(z) converges uniformly to φ̄(z) on |z| ≤ 1/2. Note that (1.3) implies

φ̄n+1(z) =
qn

qn+1

∫ ∞

qnz/qn+1

φ̄n(z′)2 dz′ , z ∈ C, n = 0, 1, 2, · · · .(2.12)

This with (1.6) then imply that φ̄n(z) actually converges uniformly to φ̄(z) on any compact sets
as n → ∞, hence φ̄ is entire, and our proof will be complete.

We are left with proving (2.10) and (2.11). To prove (2.10), note that (2.7) and (2.8) (with
an,0 = qn) imply (0 ≤) ᾱn,k ≤ 1, k, n = 0, 1, 2, · · · . Hence, if |z| ≤ 1/2 then

|φ̄n(z)| ≤
∞∑

k=0

ᾱn,k|z|k ≤ 2, n = 0, 1, 2, · · · ,

implying uniform boundedness. Let ε > 0 . If |zi| ≤ 1/2, i = 1, 2, and |z1 − z2| < ε/4, then

|φ̄n(z1) − φ̄n(z2)| ≤
∞∑

k=0

ᾱn,k|zk
1 − zk

2 | ≤ |z1 − z2|
∞∑

k=0

2−k+1k < ε,

which implies equicontinuity. Thus (2.10) is proved.
Finally, we prove (2.11). Let γ = {γk | k = 0, 1, 2, · · ·}, be a non-negative sequence satisfying

γ0 = 1, and for r > 0 define ã(r)n = {ã(r)n,k | k = 0, 1, 2, · · ·}, n = 0, 1, 2, · · ·, by

ã(r)n = Mn
r (γ), n = 0, 1, 2, · · · .(2.13)

By (2.5), we see that ã(r)n is decreasing in r.

Lemma 2.1. For r > 0 and for any γ in (2.13), ã(r)n,k = α(r)k if n ≥ k ≥ 0, where α(r) is as
in (2.6).

Proof. By definition, ã(r)n,0 = α(r)0 = 1, n = 0, 1, 2, · · ·, hence in particular the claim holds for
n = 0 . Assume that the claim holds for some n and for all k satisfying 0 ≤ k ≤ n . Then for
1 ≤ k ≤ n + 1 we have

ã(r)n+1,k =
1

krk+1

k∑
j=1

ã(r)n,k−j ã(r)n,j−1 =
1

krk+1

k∑
j=1

α(r)k−jα(r)j−1 = α(r)k,

hence the claim holds for n + 1 . �
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Let us proceed with the proof of (2.11), and let 0 < ε < 1 . The assumption (1.6) implies that
there exists n0 such that

(1 − ε)ρ ≤ qn+1

qn
≤ (1 + ε)ρ, n ≥ n0,

which further implies, by induction, with (2.9) and (2.5),

Mn
(1+ε)ρ(ᾱn0) ≤ ᾱn0+n = Mn

ρ (ᾱn0) ≤ Mn
(1−ε)ρ(ᾱn0), n = 0, 1, 2, · · · .(2.14)

Put γ = ᾱn0 in (2.13). Comparing (2.14) with (2.13) we have,

ã(ρ(1 + ε))n = Mn
ρ(1+ε)(ᾱn0) ≤ ᾱn+n0 ≤ Mn

ρ(1−ε)(ᾱn0) = ã(ρ(1 − ε))n, n = 0, 1, 2, · · · .
With Lemma 2.1 we further have,

α(ρ(1 + ε))k ≤ ᾱn+n0,k ≤ α(ρ(1 − ε))k, n ≥ k ≥ 0,

Hence

α(ρ(1 + ε))k ≤ lim inf
n→∞ ᾱn,k ≤ lim sup

n→∞
ᾱn,k ≤ α(ρ(1 − ε))k, k = 0, 1, 2, · · · .

Noting that 0 < ε < 1 is arbitrary and α(r)k is a polynomial in r−1, we have (2.11). �

3 Monotonicity arguments.

Here we prove Theorem 1.2.
Put

Ω = {f : [0,∞) → [0,∞) |
decreasing, right continuous, f(0) = 1, lim

t→∞ f(t) = 0} .

If φ ∈ Oa, then the corresponding F appearing in the expression (1.9) satisfies 1 − F ∈ Ω.
We shall first rewrite the recursion equation (1.3) in terms of corresponding F ’s.
For � > 0 and f ∈ Ω define R�(f) : [0,∞) → [0,∞) by R�(f)(0) = 1 and

R�(f)(t) =
1
�t

∫ �t

0
f(s)f(�t − s) ds, t > 0 .(3.1)

Lemma 3.1. (i) R�(Ω) ⊂ Ω.

(ii) Let � > 0 and f ∈ Ω and g ∈ Ω. If f(t) ≤ g(t), t > 0, then R�(f)(t) ≤ R�(g)(t), t > 0 .

Proof. Note that

R�(f)(t) =
∫ 1

0
f(�t

1 − s

2
)f(�t

1 + s

2
) ds, t > 0 .(3.2)

Continuity and non-negativity of R�(f) follows from (3.2) and f ∈ Ω. Then the decreasing
property and R�(f)(t) ≤ 1, t > 0, follows. lim

t→∞R�(f)(t) = 0 then follows from (3.2) and the

dominated convergence theorem. Hence (i) is proved. Using (3.2) and non-negativity of f and g,
(ii) also follows easily. �
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Lemma 3.2. Let a > 1 and φ0 ∈ Oa, and let φn, n = 0, 1, 2, · · ·, be a sequence defined recursively
by (1.3) on [0,∞). Then φn ∈ Oa, n = 0, 1, 2, · · ·, and each φn has an expression

φn(x) =
∫ ∞

0
e−xt(1 − Fn(t))dt , x ≥ 0,(3.3)

with 1 − Fn ∈ Ω, and Fn, n = 0, 1, 2, · · ·, satisfies

1 − Fn+1 = R1(1 − Fn), n = 0, 1, 2, · · · .(3.4)

Proof. By assumption there exists F0 ∈ Ω such that

φ0(x) =
∫ ∞

0
e−xt(1 − F0(t))dt , x ≥ 0 .(3.5)

Define Fn : [0,∞) → [0,∞), n = 0, 1, 2, · · ·, recursively by (3.4), and put

φ̃n(x) =
∫ ∞

0
e−xt(1 − Fn(t))dt , x ≥ 0, n = 0, 1, 2, · · · .(3.6)

Lemma 3.1(i) implies

1 − Fn ∈ Ω, n = 1, 2, 3, · · · .(3.7)

By definition, φ0 ∈ Oa implies F0(t) ≤ Cta, t > 0 . On the other hand, if, for some n, there
exists Cn > 0 (independent of t) such that Fn(t) ≤ Cnta, t > 0, then (3.2) implies that there
exists Cn+1 > 0 such that

Fn+1(t) ≤ Cn+1t
2a ≤ Cn+1t

a, 0 < t ≤ 1 .

We have already seen that 1 − Fn+1 ∈ Ω, hence Fn+1 is bounded. Therefore there exists C ′ > 0
such that Fn+1(t) ≤ C ′ta, t > 0 . By induction, similar estimates hold for all n = 0, 1, 2, · · ·. This
with (3.7) and (3.6) implies that φ̃n ∈ Oa, n = 0, 1, 2, · · ·. Therefore, if we can prove that φ̃n = φn

for all n, the proof of Lemma 3.2 is complete. Since this holds by definition for n = 0, it suffices
to prove that φ̃n satisfies the same recursion relation (1.3) as φn. Using (3.1) in (3.4), we have,
from (3.6),

φ̃n+1(x) =
∫ ∞

0
dt e−xt 1

t

∫ t

0
(1 − Fn(s))(1 − Fn(t − s)) ds

=
∫ ∞

0
du

∫ ∞

0
dv

1
u + v

e−x(u+v)(1 − Fn(u))(1 − Fn(v))

=
∫ ∞

x
dy

∫ ∞

0
du

∫ ∞

0
dv e−y(u+v)(1 − Fn(u))(1 − Fn(v))

=
∫ ∞

x
(φ̃n(y))2 dy, x ≥ 0,

which proves that φ̃n satisfies (1.3). �

Using Lemma 3.1(ii), we can now state a sufficient condition for qn, n = 0, 1, 2, · · ·, to be
increasing.

Proposition 3.3. Let a > 1, φ0 ∈ Oa, and F0 be as in (3.5), and let φn, n = 0, 1, 2, · · ·, be
a sequence defined recursively by (1.3) on [0,∞). If (1 − F0)(t) ≤ R1(1 − F0)(t), t > 0, then
qn = φn(0), n = 0, 1, 2, · · ·, is increasing.
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Proof. Lemma 3.2 implies that there exists Fn, n = 0, 1, 2, · · ·, such that

1 − Fn = Rn
1 (1 − F0) ∈ Ω, φn(x) =

∫ ∞

0
e−xt(1 − Fn(t))dt , x ≥ 0, n = 0, 1, 2, · · · .

By assumption, 1−F0(t) ≤ 1−F1(t), t > 0. Applying R1 on both sides and using Lemma 3.1(ii),
we inductively obtain

(0 ≤) 1 − F0(t) ≤ 1 − F1(t) ≤ 1 − F2(t) ≤ · · · , t > 0 .

Integrating by t > 0, we see that qn = φn(0) is increasing. �

We next turn to a proof of Theorem 1.2.

Lemma 3.4. Assume that F0 : [0,∞) → [0,∞) satisfies 1−F0 ∈ Ω and F0(t) ≤ Cta, t > 0, for
some positive constants C and a. Then Fn, n = 0, 1, 2, · · ·, defined by (3.4) satisfies lim

n→∞Fn(�nt) =

0, t > 0, if 0 < � < �s(a), where �s(a) = sup
0<a′<a

�(a′) and �(a) =
(

a + 1
2

)1/a

.

Remark. By elementary calculus, we see that �s(a) in this Lemma is equal to �s(a) of (1.10) in
Theorem 1.2.

Proof of Lemma 3.4. For a > 0 define f̃a ∈ Ω by

f̃a(t) = max{(1 − ta), 0}, t > 0 .(3.8)

Let a > 0, 0 < t ≤ 1, and 0 < � ≤ �(a), and put

A = {s ∈ (0, 1] | f̃a(�t(1 + s)/2) 
= 0} .

We have

(0, 1] \ A = {s ∈ (0, 1] | �ata(1 + s)a2−a ≥ 1} .

Since f̃a is decreasing, we have,

{s ∈ (0, 1] | f̃a(�t(1 − s)/2) = 0} ⊂ {s ∈ (0, 1] | f̃a(�t(1 + s)/2) = 0} .

Therefore

R�(f̃a)(t) =
∫ 1

0
f̃a(�t

1 − s

2
)f̃a(�t

1 + s

2
) ds

=
∫

A
(1 − �ata(1 − s)a2−a)(1 − �ata(1 + s)a2−a) ds

=
∫ 1

0
[1 − �ata(1 − s)a2−a − �ata(1 + s)a2−a] ds

+
∫
(0,1]\A

[�ata(1 − s)a2−a − 1 + �ata(1 + s)a2−a] ds

+
∫

A
�2at2a(1 − s2)a2−2a ds .
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Performing the first integration in the right hand side we have

R�(f̃a)(t) ≥ 1 − �a 2
a + 1

ta ≥ 1 − �(a)a
2

a + 1
ta = 1 − ta = f̃a(t),

if 0 < t ≤ 1 and 0 < � ≤ �(a). For t > 1 we have R�(f̃a)(t) ≥ 0 = f̃a(t) . Hence

R�(f̃a)(t) ≥ f̃a(t), t > 0, 0 < � ≤ �(a) .(3.9)

For a > 0 define Ta : Ω → Ω by Ta(f)(t) = f(at), t > 0 . Then

R� = R1 ◦ T�,(3.10)

and

R� ◦ Ta = Ta ◦ R� .(3.11)

The assumptions on F0 implies 1−F0(t) ≥ f̃a(C1/at), t > 0 . Since F0 is bounded, this implies
that for any 0 < a′ ≤ a there exists a positive constant C ′ such that 1 − F0(t) ≥ f̃a′(C ′t) =
TC′(f̃a′)(t), t > 0 . Lemma 3.1 and (3.9) with (3.10) and (3.11) then imply

1 − Fn(t) = R�̃
n(1 − F0)(�̃−nt) ≥ TC′R�̃

n(f̃a′)(�̃−nt) ≥ TC′(f̃a′)(�̃−nt) = f̃a′(C ′�̃−nt),
t > 0, 0 < �̃ ≤ �(a′), 0 < a′ ≤ a .

Therefore if 0 < � < �s(a), choose �̃ > � and a′ ≤ a such that �̃ < �(a′) to find

0 ≤ lim
n→∞Fn(�nt) ≤ 1 − lim

n→∞ f̃a′(C ′�n�̃−nt) = 1 − f̃a′(+0) = 0, t > 0 .

�

Lemma 3.5. Assume that a, b, � satisfy 1 < a < c − 1, a < b < 2a, �s(a) ≤ � < �s(b), and
define fa,+ : [0,∞) → [0, 1] by

fa,+(t) = min{(1 − ta + Ctb), 1}, t ≥ 0,

where C is a constant satisfying

C ≥ max{1, C1, C2}, C1 =

( √
πΓ(1 + a) (�/2)2a

2Γ(3a/2) (1 − (�/�s(b))b)

)(b−a)/a

, C2 =
a

b

(
b − a

b

)(b−a)/a

.

Then

R�(fa,+(t)) ≤ fa,+(t), t ≥ 0 .

Remark. If 1 < a < c − 1, � satisfying the assumptions exists, but if a ≥ c − 1 such � does not
exist, because then �s(b) = �s(a) = e1/c.
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Proof. Note that �s(b) < 2 for all b > 1, as is obvious from (1.10). Note also that C ≥ C2 implies
1 − ta + Ctb ≥ 0, t ≥ 0, hence fa,+ is non-negative on [0,∞).

Define t0 > 0 by Ctb−a
0 = 1. C ≥ 1 and b > a imply t0 ≤ 1. Also it is easy to see that

fa,+(t) = 1, t ≥ t0 . By definition, 0 ≤ fa,+(t) ≤ 1, t ≥ 0, hence 0 ≤ R�(fa,+)(t) ≤ 1, t ≥ 0.
Therefore the statement holds for t ≥ t0. In the following we assume 0 < t < t0 .

Using fa,+(t) ≤ 1 − ta + Ctb and (3.2), we see that

R�(fa,+)(t) ≤ 1 −
(

�

�s(a)

)a

ta + I2 + I3 ,

I2 = Ctb
(

1
C

(
�

2

)2a ∫ 1

0
(1 − u2)a du t2a−b +

(
�

�s(b)

)b
)

,

I3 = C

(
�t

2

)a+b ∫ 1

0
(1 − u2)a

(
−(1 − u)b−a − (1 + u)b−a + C

(
�t

2

)b−a

(1 − u2)b−a

)
du.

Using t < t0 = C−1/(b−a) and C ≥ C1 (noting a < b < 2a), we find I2 ≤ Ctb. Using Ctb−a
0 = 1

and � < �s(b) < 2, we have C

(
�t

2

)b−a

≤ 1, which further implies, for 0 ≤ u ≤ 1,

−(1 − u)b−a − (1 + u)b−a + C

(
�t

2

)b−a

(1 − u2)b−a

≤ −(1 − u)b−a − (1 + u)b−a + (1 − u2)b−a

≤ −2
√

(1 − u2)b−a + (1 − u2)b−a ≤
√

(1 − u2)b−a (−2 + 1) ≤ 0,

hence I3 ≤ 0 .
We therefore have

R�(fa,+)(t) ≤ 1 −
(

�

�s(a)

)a

ta + Ctb ≤ 1 − ta + Ctb ≤ fa,+(t).

�

Proof of Theorem 1.2. Let 0 < � < �s(a) . By assumptions, φn has an expression

φn(x) =
∫ ∞

0
e−xt(1 − Fn(t))dt , x ≥ 0,

where Fn is as in (3.3). Then Lemma 3.4 and dominated convergence theorem imply

lim
n→∞ �−nφn(�−nx) = lim

n→∞

∫ ∞

0
e−xs(1 − Fn(�ns)) ds =

∫ ∞

0
e−xs ds = x−1, x > 0 .

For x = 0, Lemma 3.4 and Fatou’s Lemma imply

lim inf
n→∞

∫ ∞

0
(1 − Fn(�ns)) ds ≥

∫ ∞

0
lim inf
n→∞ (1 − Fn(�ns)) ds = ∞,

which implies,

lim
n→∞ �−nφn(0) = ∞.

The second part of the Theorem is proved similarly using Lemma 3.5 in place of Lemma 3.4.
�
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4 Rod bisection.

Here we prove Theorem 1.4.
By explicit calculation, we see that

1
x

(1 − e−x) =
∫ ∞

0
e−xt(1 − F0(t))dt

with

F0(x) =

{
0, 0 ≤ x < 1,
1, x ≥ 1 .

(4.1)

Define Fn : [0,∞) → [0, 1], n = 0, 1, 2, · · ·, recursively by (3.4). Then Lemma 3.2 implies that φn

in Theorem 1.4 is given by the formula (3.3).

Lemma 4.1. qn = φn(0) is increasing in n.

Proof. By explicit calculation, we have

F1(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 < x < 1,

2 − 2
x

, 1 ≤ x < 2,

1, x ≥ 2 .

In particular, we have 1 − F0(x) ≤ 1 − F1(x), x > 0, hence Proposition 3.3 implies that qn is
increasing. �

Note that (4.1) and (3.4) inductively imply

Fn(x) = 1, x > 2n, n = 0, 1, 2, · · · .(4.2)

Lemma 4.2. lim
n→∞ q1/n

n exists and satisfies lim
n→∞ q1/n

n ≥ e1/c.

Proof. It is noted in eq. (5.1) of [7] that 1 − Fn(x) (for the choice (4.1)) is the probability that
at the nth stage of random sequential bisection of a rod of length x, all the pieces have length
shorter than 1 . Namely, one starts with a rod of length x and breaks it into two pieces randomly
with uniform distribution. Then one breaks each of the resulting two pieces randomly (with no
correlation between the pieces), and so on, and see, after n steps, whether all the 2n pieces are
shorter than unit length.

By performing partial integration on

qn = φn(0) =
∫ ∞

0
(1 − Fn(t))dt,(4.3)

and noting (4.2) to deal with the boundary terms, we have, for n > 0,

qn =
∫ ∞

0
tF ′

n(t) dt =
∫ ∞

0

1
t
σn(t) dt ,(4.4)

where, in the second equality, we made a change of variable x → 1/x and put

σn(t) = −dFn(1/t)
dt

=
1
t2

Fn
′(

1
t
) .
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1 − Fn(1/t) is the probability that all the pieces have length shorter than 1 at the nth stage of
random sequential bisection of a rod of length 1/t. In other words, it is the probability that
starting from a rod of unit length, Xn, the longest piece at nth stage, is shorter than t. Therefore
σn is the probability density of Xn. Then (4.4) implies that qn is the expectation value of 1/Xn.
If we denote the expectations by E[ · ], then qn = E[ 1/Xn ].

Now consider the longest piece X̃n,m at n + mth stage among descendants from the longest
piece Xn at nth stage. Clearly X̃n+m ≤ Xn+m. Note also that X̃n,m/Xn and Xn are independent
and the former is equal in distribution to Xm. Therefore

qn+m = E[
1

Xn+m
] ≤ E[

1
X̃n+m

] = E[
Xn

X̃n,m

]E[
1

Xn
] = E[

1
Xm

]E[
1

Xn
] = qmqn .

Hence

qn+m ≤ qnqm , n, m = 1, 2, 3, · · · .(4.5)

Put pn = log qn , n = 1, 2, 3, · · ·. Then pn+m ≤ pn + pm, n = 1, 2, 3, · · ·. Using standard
arguments on subadditivity, we deduce that

lim
n→∞

1
n

pn = inf
n≥1

1
n

pn .

Therefore, the limit

lim
n→∞ exp(pn/n) = lim

n→∞ qn
1/n = inf

n≥1
qn

1/n

exists.
Note that Theorem 1.2 is applicable to the present choice (4.1) of F0 with any a > 1 . Choose

a ≥ c− 1 . Suppose that e1/c = �s(a) > lim
n→∞ q1/n

n and choose � so that e1/c > � > lim
n→∞ q1/n

n . Then
Theorem 1.2 for x = 0 implies

lim
n→∞(�−1q1/n

n )n = lim
n→∞ �−nφn(0) = ∞,

which further implies lim
n→∞ q1/n

n ≥ �, which contradicts the choice of �. Therefore e1/c ≤ lim
n→∞ q1/n

n .
�

Lemma 4.3. If qn satisfies (1.6), then lim
n→∞ q1/n

n ≤ e1/c.

Proof. In [3] it is essentially proved that

lim
n→∞Fn(�nx) = 1, if � > e1/c, x > 0 .(4.6)

(In the reference, (4.6) may not be explicit, but this property of Fn is essentially used there to
prove that Hk/ log k → c, in probability, as k → ∞. Here Hk is the height of a binary search tree
with k nodes constructed by standard insertions from a random permutation of k positive integers.
In fact, it is easy to see that (4.6) and Lemma 2.1 in [3] imply Hk/ log k → c in probability. One
should note the correspondence Fn(t) = Prob[ Zn ≥ t−1 ] between our notation and the notation
in the reference.) Hence dominated convergence implies, for each x > 0,

lim
n→∞ �−nφn(�−nx) = 0, � > e1/c .(4.7)
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As noted in the Introduction, φ0 in Theorem 1.4 satisfies all the assumptions in Theorem 1.1
except perhaps (1.6). Hence if (1.6) also holds, the consequences of Theorem 1.1 hold. In particu-
lar, the uniform convergence of φ̄n(z) = q−1

n φn(q−1
n z) (in a neighborhood of z = 0) and φ̄n(0) = 1,

n ∈ Z+, imply, with (3.3),

(∀ε > 0)∃δ > 0, ∃n0 ∈ N; (∀n ≥ n0) (∀0 ≤ x ≤ δ) |
∫ ∞

0
e−xt(1 − Fn(qnt))dt − 1| < ε.

If q = lim
n→∞ q1/n

n > �, then �n ≤ qn for sufficiently large n, Since Fn(t) is increasing in t, this
implies, for sufficiently large n,

�−nφn(�−nx) ≥ 1 − ε, 0 ≤ x ≤ δ.

Comparing with (4.7), we see that � ≤ e1/c. This holds for all � < q, hence q ≤ e1/c. �

Lemma 4.1, Lemma 4.2, and Lemma 4.3 prove Theorem 1.4.

Remark. The arguments in [3] use, in particular, the Biggins-Kingman-Hammersley theorem, which
in turn is based on arguments of Chernov type inequalities together with the law of large numbers
for superconvolutive sequences [1, 2, 5, 6]. The arguments are strong enough to control qn

1/n, but
unfortunately cannot control qn to prove the existence of lim

n→∞ qn+1/qn.

A Appendix.

We have no explicit example for which all the assumptions in Theorem 1.1 are proven to hold.
Even for the most promising case (1.11), we lack a proof of (1.6). We give some of our numerical
results for the ratio qn+1/qn in Table 1.

Table 1: Numerical results for qn/qn−1. The number of sample points is N = 3200. The digits
shown are stable between N = 1600 and N = 3200 results.

n 0 1 2 3 4 5 6 7 8 9 10 20 30 40
qn+1/qn 1.38631.36661.35201.34081.33191.32471.31881.31381.30951.30591.30271.28511.27771.2737

Numerical values are obtained by discretizing 1−Fn (i.e., represent the function by its values
at a finite number, say N , of points), and performing numerical integration (i.e., approximating
by a discrete sum of N terms) of (3.4), starting from (4.1). The results suggest that qn+1/qn is
decreasing in n, hence (1.6) does hold. Our data is also consitent with lim

n→∞ qn+1/qn = e1/c =
1.261 · · ·.

In spite of the promising numerical results, a proof of (1.6) seems not very easy. Numerical
results suggest that qn+1/qn is decreasing in n. In fact q2/q1 ≤ q1/q0, or equivalently, q2 ≤ q2

1

does hold, by substituting n = m = 1 in (4.5). However, q3/q2 ≤ q2/q1, or q3q1 ≤ q2
2, already

seems rather hard. For example, recall the proof of Lemma 4.2 and for n = 1, 2, 3, · · · and
k = 0, 1, 2, · · · , 2n−1 − 1, let Zn,k be the length ratio of left piece of rod at n-th bisection stage,
to the k-th piece at n − 1-st stage. Start with two rods and perform two (independent) bisection
stages Zn,k and Z ′

n′,k′ . Denote by Xn and X ′
n the length of the longest pieces, respectively, at
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n-th stage. For example, X1 = max{Z10, 1 − Z10}. Then qnqm = E[ XnX ′
m ]. Now consider

conditional expectations

Q31(Z10, Z20, Z21, Z
′
10) = E[ X3X

′
1 | Z10, Z20, Z21, Z

′
10 ]

and

Q22(Z10, Z20, Z21, Z
′
10) = E[ X2X

′
2 | Z10, Z20, Z21, Z

′
10 ].

Our expectation is E[ Q31 ] = q3q1 ≤ q2
2 = E[ Q22 ]. A sufficient condition for this to hold is

Q31 ≤ Q22, a.s. (?)(A.1)

However, it turns out that (taking an obvious contiuous versions of conditional expectations)

xQ22(1/2, x, 1/2,1/2) = 16(1 − log 2) = 4.9 · · · , 1
2
≤ x ≤ 1,

while

lim
x↑1

xQ31(1/2, x, 1/2,1/2) = 8 log 2 = 5.5 · · · ,

and

1
2

Q31(1/2,1/2,1/2,1/2) =
80
3

− 32 log 2 = 4.4 · · · ,

so that (A.1) does not hold. This shows some difficulties encountered in an attempt to prove
monotonicity of qn+1/qn .
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