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Abstract

The Malliavin-Thalmaier formula was introduced in [7] for use in Monte-Cailo-
ulation. This is an integration by parts formula for high dimensional probabibtysidy
functions. But when this formula is applied directly for computer simulation, veevghat
itis unstable. We propose an approximation to the Malliavin-Thalmaier formulhelfirst
part of this paper, we prove the central limit theorem to obtain the value® gfatameters
in Monte-Carlo simulations which achieves a prescribed error level. Teegtpwe need
the order of the bias and the variance of the approximation error, andowve the central
limit theorem by using these error estimation. And in the latter part, we obtaingiciex
Malliavin-Thalmaier formula for the calculation of Greeks in finance. The hisigbtained
are free from the curse of dimensionality.

1 Introduction

The goal of the present article is to estimate through sitiauia probability density functions
of multi-dimensional random variables using Malliavin Gdics and discuss some of its appli-
cations.

Usually, a result applied to estimate a multidimensionakitg is the classical integration by
parts formula of Malliavin Calculus that is stated, for exdenjn Proposition 2.1.5 of Nualart

[8].

Proposition 1.1 Let G € D>, F = (Fy,..., F4) be a nondegenerate random vector. Then for
X e RY,

d
Pre® = E|| | Lo (Fi = %)Haz. o(F;G)|, (1.1)
i=1
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wherely .)(X) denotes the indicator function and foei2, ..., d,

Ha)(F; G) D*(G(y£")!DF)).

Mo 1

1l
=

T
=
=
L

@
N

Il

.....

J

Here D' denotes the adjoint operator of the Malliavin derivativeeggtor D andyg the Malli-
avin covariance matrix of F.

Expression (1.1) has lead to various results concerningy¢iieal estimates of the density,
its support etc. However that expression is not veficient for computer simulation, that is, it
has an iterated Skorohod integral. Recently, Malliavin ahdlhaier [7], Theorem 4.23, gave a
new integration by parts formula that seems to alleviatetmeputational burden for simulation
of densities in high dimension. We call this formula the Néadin-Thalmaier formula. In this
formula, one needs to simulate only one Skorohod integistbad of the previous multiple
Skorohod integrals. But there is still a problem, that is,whgance of the estimator is infinite.
Therefore we propose a slightly modified estimator that ddp®n a modification parameter
which will converge to the Malliavin-Thalmaier formula bs— 0. This will generate a small
bias and a large variance which is not infinite.

First to obtain the dticient number of Monte-Carlo simulation times, we prove thetie
limit theorem even though the variance of the density estirsaexplode. To prove it, we need
some estimations of the order of the bias and the variandeecdpproximation error. Finally,
this central limit theorem gives the corresponding optipatametet. Next we apply the
Malliavin-Thalmaier formula to finance, especially to thelaulation of Greeks. In the one
dimensional case, a method to obtain Greeks by the integrhi parts formula was introduced
by Fourné et al [4]. Here we focus our attention to the high dimensional casde give an
expression of Greeks, which is derived using the Malliaiaimaier formula. In particular,
the weights are free from the curse of dimensionality. Thathe expression does not have a
multiple Skorohod integral.

We have not tried to introduce approximations Fom the theoretical study of the error in
order not to burden the reader with technical issues. A alp&sult incorporating these issues
should be a combination with other known techniques (seeGamentet al. [3]).

Also note that the expression in (1.1) corresponds to a temsly in the case thad = 1. In
general, it represents a conditional expectation muttipby the density. To avoid introducing
further terminology, we will keep referring to-g(X) as the “density”.

2 Preliminaries

Let us introduce some notations. For a multi-index (a, ..., am) € {1, ...,d}™, we denote by
la] = mthe length of the multi-index.

2.1 Malliavin Calculus

Let (Q, 7, P) be a complete probability space. Suppose that a real separable Hilbert space
whose norm and inner product are denoted| by, and< -, - >, respectively. LeW(h) denote
a Wiener process oOH.



We denote byC7(R") the set of all infinitely diferentiable functiond : R" — R such that
f and all of its partial derivatives have at most polynomiaivgh.
Let S denote the class asimoothrandom variables of the form

F = f(W(hy), ..., W(hy)), (2.1)
wheref € CP(R"), hy, ...,h, € H, andn > 1.
If F has the form (2.1) we define its derivatiizd as theH-valued random variable given
by

N of
DF = ; g—(W(hl), s W(h))h.

We will denote the domain db in LP(Q) by DP. This space is the closure of the class of
smooth random variableS with respect to the norm

1
p

IFllup = {E[IFP| + E[IDFI3]}

We can define the iteration of the operaibin such a way that for a smooth random variable
F, the derivativeD¥F is a random variable with values ¢iP*. Then for everyp > 1 andk € N
we introduce a seminorm a® defined by

k
IFIE, = E[IFIP] + > E[IDIFIE, |
j=1

For any realp > 1 and any natural numbér> 0, we will denote byD*P the completion of the
family of smooth random variableS with respect to the norm- ||k ,. Note thatD!P c D4 if
j>kandp > q.

Consider the intersection

D~ =) D,

p>1 k>1

ThenD* is a complete, countably normed, metric space.

We will denote byD* the adjoint of the operator @s an unbounded operator frdri(Q)
into L2(Q; H). That is, the domain ob*, denoted by Doni}*), is the set oH-valued square
integrable random variablessuch that

[E[< DR, u>y]l < cliFll,

for all F € D2, wherec is some positive constant dependingwn(here|| - ||, denotes the
L2(Q)-norm.)

Suppose thaF = (F4,...,Fq) is a random vector whose components belong to the space
D, We associate witkr the following random symmetric nonnegative definite matrix

Ve = ( < DF;, DF; >4 )Ki’jsd.

This matrix is called théalliavin covariance matribof the random vectol.

Definition 2.1 We say that the random vector=F (Fy, ..., Fq) € (D*)! is nondegenerate if the
matrix yg is invertible a.s. and

(detyp)t e ﬂ LP(Q).

p>1
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2.2 Malliavin-Thalmaier Representation of Multi-Dimensional Density Func-
tions

Assume thatl > 2 is fixed through this paper.

Definition 2.2 Given theR%-valued random vector F and thR-valued random variable G,
a multi-indexa and a power p> 1 we say that there is an integration by parts formula in
Malliavin sense if there exists a random variablg(A; G) € LP(Q2) such that

ol

IP,o(F.G): E Mf(F)G]:E[f(F)HC,(F;G)] for all f € C(RY).

We represent the delta function By(x) = AQq(x) for x € RY, whereA means Laplacian. If
f e CZ(RY), then the solution of the Poisson equation= f is given by the convolutio®q = f
where the fundamental solution (also called Poisson kefehas the following explicit form;

Q) := &' In|x| ford=2 and Qq(x) := —ag* ford > 3,

|X|d—2

whereay is the area of the unit sphere Rf.. The derivative of the Poisson kernel%%(x) =
Adr, Wherei = 1,....d, A := a;* and ford > 3, Aq = a;*(d - 2).

Related to the Malliavin-Thalmaier formula, Bally and Cardimel[2], have obtained the
following result.

Proposition 2.3 (Bally, Caramellino [2]) Suppose that for some>p1, sup,. E[|H%Qd(F -

a)|71 + |Qu(F — @)|71] < o forall R> 0, ae R4 If IP; o(F;G), i = 1,....d, holds then the law
of F is absolutely continuous with respect to the LebesguesateanR? and the density g
is represented as, for € RY,

d
Pral®) = E| Y, 5 QulF - o (F: O)| 2.2)
i=1

Corollary 2.4 If F = (F4, ..., Fg) is a nondegenerate random vector ande@D®, then (2.2)
holds for the probability density function of the randomteed at X € RY.

3 Central Limit Theorem

In this section, we give the rate of convergence of the matidaimator of the density &te RY.
Definitions and Notations

1. Forh > 0 andx € RY, define| - | by Xl := +/ f':l X2 + h. Without loss of generality, we
assume & h< 1.
2. Fori =1,...,d, define the following approximation tg-Qq, for x € RY, 7-Q(x) := Ag=

W.
3. Then we define the approximation to the density functioR afs; forx € R,

PRc(x) = E

d
; a—XiQQ(F — X)Hy(F; G)] . (3.1)

Obviously when performing simulations, one is also intexesn obtaining confidence in-
tervals and therefore the Central Limit Theorem is usefuluichsa situation. In what follows
= denotes weak convergence and the inglex 1, ..., N denoteN independent copies of the
respective random variables.



Theorem 3.1 Let Z be a random variable with standard normal distributiémd F? e (D)4
and G e D> are respectively a random vector and a random variable whaketindependent
identical distribution.

(). Whend= 2, setn= —=
Then

and N = for some positive constant C fixed throughout.

h2| 1

=i

1 N 2 9 . A ' ) i )
”[N Z Z - Q3(FY —H (F;6)Y - pF,G(X)) = Ciz-cic,

where Hy(F;G)V,i=1,...d, j =1, .., N, denotes the weight obtained in the j-th independent
simulation (the same that generate® Iand G(J)) and C, C3 are some constants.
(i). When d> 3, setn= £+ and N= for some positive constant C fixed throughout.

h

Then

hz*l(l

-Qi(FY - )H) (F; G)W - pF,G(f()] = 4/CiZ-CiC,

e
e

Z|I—‘
[
N

22

where G, C; are some constants.

Remark 3.2

(). Inthe assertion of Theorem 3.1, we can freely choose thearSt Therefore we have
that if C is small (wrt G), then the bias becomes small.

(i). This theorem also gives an idea on how to choose h once n or k& fi

To prove Theorem 3.1, we need the following estimationsctvimeasure the order of the
error of the approximation to the density.

Proposition 3.3 Let F be a nondegenerate random vector and B, then fork = (X, ..., Xq) €
RY,

. . . 1 .
Pec(X) — pEs(X) = Cihin o C3h + o(h),

where G and G are constants which depend &nbut are independent of h. The constants can
be written explicitly.

Next we compute the rate at which the variance of the estimesiog Q] diverges.

Proposition 3.4 Let F be a nondegenerate random vector and G*.
(i). Ford = 2andX € RY,

L1
= CIn = + O(2),

, 2
E (; c?ixng(F - X)H;)(F; G) - pF,G(f()]

where G is a constant which depends grbut is independent of h. The constants can be written

explicitly.
ofies)
+0o|—],
h2‘1 g-1

(ii). Ford > 3andX € RY,
4 5 2
[[Z ax, (F X)Hi)(F; G) - pFG(X)]
1
where q is a constant which depends &rbut is independent of h. The constants can be written
explicitly.




Remark 3.5 In particular, for h = 0 one obtains that the variance of the Malliavin-Thalmaier
estimator is infinite.

Lemma 3.6 Under the same assumptions of Theorem 3.1, the followingts hol

Q).

45 2 c§|n%+0(1) ifd=2
(Z a_ FO —)Hq(F; ) ~ DE,G(?)] =) 5 1 1) .
C4@+0( %—l) if d23,

where G, C are the same constants of Proposition 3.4.
(il). Forany d> 2,

d 3
Z QUF® - )Hy(F; 6)P - pLe()| | <

=1

4 Simulation 1 ~ Density of 2-dim. Black-Scholes Model~

Here we give a simulation result in the case of 2-dimensitwghormal density. In Figures 1
and 2, we show the result of the simulation of (2.2) and (3tiijee 1. That is,

dX! = X10.01dt + 0.1dW! + 0.2dW?} and dX? = X2{0.02dt + 0.3dW" + 0.2dW?}.

We have used the Euler-Maruyama approximation with 10 tit@essandN = 10* Monte Carlo
simulations at each point. As it can be seen from Figure Tethee some points where the
estimate is unstable. This is clearly due to the infinitearace of the Malliavin-Thalmaier
estimator.

density density

0.0005 0.0005
0.0004 ~ 0.0004 ~
0.0003 ~ 0.0003 ~
0.0002 ~ 0.0002 ~
0.0001 - 0.0001 -
0 0 ==
-0.0001 - -0.0001

-0.0002 -0.0002

-0.000208 -0.000208

sloc2 sloc2

Figure 1. equation (2.2) Figure 2: equation (3.1)h(= 0.01)

5 Application of the Malliavin-Thalmaier formula to Finance

In this section, we compute Greeks using the Malliavin-Trekr Formula. We consider a
random vectoF* = (F/,...,F4), u € R™, m e N which depends on a parameter Suppose
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that F* € (D*)Y is a nondegenerate random vector. Andflet, ..., Xq) be a pay€ function in
aclass

continuous &. wrt Lebesgue measurand

. . mod .
A= {f RE—R: there exist constantsa such thatf(x)| < (1+|x|)a (a>1) }
A greek is defined foff € A, as the following quantity for somge {1, ...,, m};
0
a—’qu | £ (FY. ... F4)|-

We denote the integration with respectdd, 5(x) by E"[]. That is,

T ()= [ [ 1m0k

40 = 5 ° [ 102 Qy -k y < B

Theorem 5.1 Let ke {1, ..., m} be fixed. Let fe A. Let F* be a nondegenerate random vector,

which is dfferentiable with respect ta,. Suppose that for 1, ...,d, (; L e D™,

And fori, j =1,...,d, set

d d

g, 0 o OF"
" > E [ f f , 1007 Qlity = )dkH (P, 1)] => E[ghi(F“)Hm(F*‘: a_ﬂiﬂ (5.1)

i1 ij=1

Moreover if we assume that for alH 1, ..., d, there exists some;gsuch that Qi — @i a.e. as
h — 0, then

NG dE>hF“H Fﬂ-aFl"‘—
Em [( )] = .; »gi,i( )H() 6—#'(
Zd:E (F“)Hg) | F* P - E[f(F)| ash—o0. (5.2)
i [ F || = =— ash — 0. :
i,j:l _gl’l (J) al“lk ) al”lk
Remark 5.2

(). The expression in Theorem 5.1 is obviously not unique; e.g.

d } . oF;
S Ny |

ihj=1

! Note that in the case of a put option, if we define the pfnction K — X), = (K — X)jox;(X) then
(K=X), € A

In a digital put option case, the paydéunction islj k;(x). Therefore it is inA.

Next in a digital call option case, the paydunction 1jk .)(X) does not go to 0 as — co. But since stocks do
not take negative value, then we can transform as it follows,

1[K!oo)(X) =1- 1[0,K)(X).

And now we want to calculate Greeks, that is, derivation eftérm 1 is 0. It is enough to calculate the term
1j0.x)(X), which has a compact support.

Finally if we want to compute a Greeks for call option case K)., then one uses directty andgih after taking
the derivative. Although it is known that then a localizatie needed.
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(@i). If g{jj, i, j = 1,...,d has an explicit representation, then one can calculatecsesasily.
If we do not have an explicit expression for the multiple irde¢hen one can use any
approximation for multiple Lebesgue integrals. An exangdléhe case that;g has an
explicit expression. In the digital put case, lee® and f(x;, x2) = 1(0 < x; < K)1(0 <
X < Ky) € Awhere K and K; are positive constants. Then

— K —K
gialy) = Aglarctan — arcta’> 2 _ arctan—22__ + arctar’2— 2\
% z n K DR ENCE)
_ Y1 Y1 — Kl V1 Y1 — Kl
O22(y) = Ap{arctan’= — arctan"—— — arctan——— + arctare——- v .
Y2 Y2 Y2 = K2 Yo — Kz

These expressions are obtained after taking Iimits{“’lcﬁj/)gas h— Ofori=1,2

(ii). If we use the classical expression of the density, for exaRwlgosition 2.1.5 in Nualart
[8], then we need a multi dimensional Skorohod integral to ev@ireeks explicitly.

(iv). We remark that in Theorem 5.1Hequires only one Skorohod integral. Even if higher
derivatives with respect {o are considered this fact remains unchanged.

6 Simulation 2 ~ Delta of Digital Option in Heston Model ~

Now we consider an example. We calculate Delta in a kind ofg#galioption and the asset is
characterized by Heston model. First we define the Hestorehasdfollows;

dS, = uSdt+ V1-p2 WiSAWE + p VW SidW,
dv k(0 — v)dt + o VW dW,

where their initial values for the stock price proc&sand the volatility procesg ares, andvy,
respectivelyu is a constant, 6, o are positive constants apd: [-1, 1] is a constantW? and
WY are Brownian motion and independent of each other.

We study the Delta of the following option

E[e1(Ks < S)l(vr < K))],

wherer expresses a constant interest rate. Without loss of gétyevet assume that= 0. Kg
andK, are strike prices of stock and volatility respectively.
Then the Delta of above option is;

5 we
—E|[1(Ks < ST)1(vr < K))| = E|1(Ks < S7)1(vr < K) .
7wl | VI—p%s ;| Wadu

We simulate above Delta by using the following parametegs= 100, u = 0.1, vy =
008 k=2, 60=008 o =02 Ks =100 K, =0.08 p =0.2 T = 1. For the simulation
of S; andv;, we use the Euler-Maruyama approximation with 50 time s&aps for pricing
simulation, then a number of Monte Carlo simulatidn= 10’ times. The gradient of Figure 3
is about 0.008, and the Delta by equation (6.1) and (5.2) (@vve put—g;; and—g, in (5.3)
instead ofg;; in (5.2)) is both close to 0.008. (Figure 4 and Figure 5).

(6.1)



Remark 6.1

(). The Heston model leads to an incomplete market. Therefere #ire many equivalent
martingale measures. We do not discuss that problem here.

(ii).

In the Heston model, one has to prove the Malliavifiedentiability of v. This result can

be found in Alos, Ewald [1]. In fact, the volatility processiy not inD>. But since g
depends on only&nd v is independent of W the above result follows.

(iif). We have chosen the above parameter so as to ensure the egistah uniqueness of the
equation defining v and so that is strictly positive with proitisy one. For more details,
see Section 6.2.2. in Lamberton, Lapeyre [6].

Digital Option Price and Variance (rh0=0.2, n=50, N=10"7)

s L
90 95

L L
100 105

Initial price

Figure 3: Initial price - Option price
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Monte Carlo -- Delta and Variance (rho=0.2,n=50)
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0.0092
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L
1000 10000
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Figure 4: MC - Delta of (6.1) and (5.2)
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