
Estimating Multidimensional Density Functions using
the Malliavin-Thalmaier Formula and Application to

Finance

A. Kohatsu-Higa∗, Kazuhiro Yasuda†

Tohoku Probability Seminar @ Tohoku University

June 28, 2007

Abstract

The Malliavin-Thalmaier formula was introduced in [7] for use in Monte-Carlosim-
ulation. This is an integration by parts formula for high dimensional probability density
functions. But when this formula is applied directly for computer simulation, we show that
it is unstable. We propose an approximation to the Malliavin-Thalmaier formula. In the first
part of this paper, we prove the central limit theorem to obtain the values of the parameters
in Monte-Carlo simulations which achieves a prescribed error level. To prove it, we need
the order of the bias and the variance of the approximation error, and we prove the central
limit theorem by using these error estimation. And in the latter part, we obtain an explicit
Malliavin-Thalmaier formula for the calculation of Greeks in finance. The weights obtained
are free from the curse of dimensionality.

1 Introduction

The goal of the present article is to estimate through simulations probability density functions
of multi-dimensional random variables using Malliavin Calculus and discuss some of its appli-
cations.

Usually, a result applied to estimate a multidimensional density is the classical integration by
parts formula of Malliavin Calculus that is stated, for example, in Proposition 2.1.5 of Nualart
[8].

Proposition 1.1 Let G ∈ D
∞, F = (F1, ..., Fd) be a nondegenerate random vector. Then for

x̂ ∈ R
d,

pF,G(x̂) = E















d
∏

i=1

1[0,∞)(Fi − x̂i)H(1,2,...,d)(F; G)















, (1.1)
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where1[0,∞)(x) denotes the indicator function and for i= 2, ...,d,

H(1)(F; G) :=
d

∑

j=1

D∗
(

G(γ−1
F )1 jDF j

)

,

H(1,...,i)(F; G) :=
d

∑

j=1

D∗
(

H(1,...,i−1)(F; G)(γ−1
F )i j DF j

)

.

Here D∗ denotes the adjoint operator of the Malliavin derivative operator D andγF the Malli-
avin covariance matrix of F.

Expression (1.1) has lead to various results concerning theoretical estimates of the density,
its support etc. However that expression is not very efficient for computer simulation, that is, it
has an iterated Skorohod integral. Recently, Malliavin and Thalmaier [7], Theorem 4.23, gave a
new integration by parts formula that seems to alleviate thecomputational burden for simulation
of densities in high dimension. We call this formula the Malliavin-Thalmaier formula. In this
formula, one needs to simulate only one Skorohod integral instead of the previous multiple
Skorohod integrals. But there is still a problem, that is, thevariance of the estimator is infinite.
Therefore we propose a slightly modified estimator that depends on a modification parameterh,
which will converge to the Malliavin-Thalmaier formula ash → 0. This will generate a small
bias and a large variance which is not infinite.

First to obtain the sufficient number of Monte-Carlo simulation times, we prove the central
limit theorem even though the variance of the density estimators explode. To prove it, we need
some estimations of the order of the bias and the variance of the approximation error. Finally,
this central limit theorem gives the corresponding optimalparameterh. Next we apply the
Malliavin-Thalmaier formula to finance, especially to the calculation of Greeks. In the one
dimensional case, a method to obtain Greeks by the integration by parts formula was introduced
by Fourníe et al [4]. Here we focus our attention to the high dimensional case. We give an
expression of Greeks, which is derived using the Malliavin-Thalmaier formula. In particular,
the weights are free from the curse of dimensionality. That is, the expression does not have a
multiple Skorohod integral.

We have not tried to introduce approximations forF in the theoretical study of the error in
order not to burden the reader with technical issues. A typical result incorporating these issues
should be a combination with other known techniques (see e.g. Clementet al. [3]).

Also note that the expression in (1.1) corresponds to a density only in the case thatG = 1. In
general, it represents a conditional expectation multiplied by the density. To avoid introducing
further terminology, we will keep referring topF,G(x̂) as the “density”.

2 Preliminaries

Let us introduce some notations. For a multi-indexα = (α1, ..., αm) ∈ {1, ...,d}m, we denote by
|α| = m the length of the multi-index.

2.1 Malliavin Calculus

Let (Ω,F ,P) be a complete probability space. Suppose thatH is a real separable Hilbert space
whose norm and inner product are denoted by‖ · ‖H and< ·, · >H respectively. LetW(h) denote
a Wiener process onH.
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We denote byC∞p (Rn) the set of all infinitely differentiable functionsf : R
n → R such that

f and all of its partial derivatives have at most polynomial growth.
LetS denote the class ofsmoothrandom variables of the form

F = f (W(h1), ...,W(hn)), (2.1)

where f ∈ C∞p (Rn), h1, ...,hn ∈ H, andn ≥ 1.
If F has the form (2.1) we define its derivativeDF as theH-valued random variable given

by

DF =
n

∑

i=1

∂ f
∂xi

(W(h1), ...,W(hn))hi .

We will denote the domain ofD in Lp(Ω) by D
1,p. This space is the closure of the class of

smooth random variablesS with respect to the norm

‖F‖1,p =
{

E
[

|F|p
]

+ E
[

‖DF‖pH
]}

1
p
.

We can define the iteration of the operatorD in such a way that for a smooth random variable
F, the derivativeDkF is a random variable with values onH⊗k. Then for everyp ≥ 1 andk ∈ N

we introduce a seminorm onS defined by

‖F‖pk,p = E
[

|F|p
]

+

k
∑

j=1

E
[

‖D jF‖p
H⊗ j

]

.

For any realp ≥ 1 and any natural numberk ≥ 0, we will denote byDk,p the completion of the
family of smooth random variablesS with respect to the norm‖ · ‖k,p. Note thatD j,p ⊂ D

k,q if
j ≥ k andp ≥ q.

Consider the intersection

D
∞ =

⋂

p≥1

⋂

k≥1

D
k,p.

ThenD
∞ is a complete, countably normed, metric space.

We will denote byD∗ the adjoint of the operator Das an unbounded operator fromL2(Ω)
into L2(Ω; H). That is, the domain ofD∗, denoted by Dom(D∗), is the set ofH-valued square
integrable random variablesu such that

|E[< DF,u >H]| ≤ c‖F‖2,

for all F ∈ D
1,2, wherec is some positive constant depending onu. (here‖ · ‖2 denotes the

L2(Ω)-norm.)
Suppose thatF = (F1, ..., Fd) is a random vector whose components belong to the space

D
1,1. We associate withF the following random symmetric nonnegative definite matrix:

γF =
(

< DFi ,DF j >H

)

1≤i, j≤d
.

This matrix is called theMalliavin covariance matrixof the random vectorF.

Definition 2.1 We say that the random vector F= (F1, ..., Fd) ∈ (D∞)d is nondegenerate if the
matrixγF is invertible a.s. and

(detγF)−1 ∈
⋂

p≥1

Lp(Ω).
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2.2 Malliavin-Thalmaier Representation of Multi-Dimensional Density Func-
tions

Assume thatd ≥ 2 is fixed through this paper.

Definition 2.2 Given theR
d-valued random vector F and theR-valued random variable G,

a multi-indexα and a power p≥ 1 we say that there is an integration by parts formula in
Malliavin sense if there exists a random variable Hα(F; G) ∈ Lp(Ω) such that

IPα,p(F,G) : E

[

∂|α|

∂xα
f (F)G

]

= E
[

f (F)Hα(F; G)
]

for all f ∈ C|α|0 (Rd).

We represent the delta function byδ0(x) = ∆Qd(x) for x ∈ R
d, where∆ means Laplacian. If

f ∈ C2
0(Rd), then the solution of the Poisson equation∆u = f is given by the convolutionQd ∗ f

where the fundamental solution (also called Poisson kernel) Qd has the following explicit form;

Q2(x) := a−1
2 ln |x| for d = 2 and Qd(x) := −a−1

d

1
|x|d−2

for d ≥ 3,

wheread is the area of the unit sphere inRd. The derivative of the Poisson kernel is∂Qd

∂xi
(x) =

Ad
xi

|x|d , wherei = 1, ...,d, A2 := a−1
2 and ford ≥ 3, Ad := a−1

d (d − 2).
Related to the Malliavin-Thalmaier formula, Bally and Caramellino [2], have obtained the

following result.

Proposition 2.3 (Bally, Caramellino [2]) Suppose that for some p≥ 1, sup|a|≤R E[| ∂
∂xi

Qd(F −
a)|

p
p−1 + |Qd(F − a)|

p
p−1 ] < ∞ for all R> 0, a ∈ R

d. If IP i,p(F; G), i = 1, ...,d, holds then the law
of F is absolutely continuous with respect to the Lebesgue measure onR

d and the density pF,G
is represented as, for̂x ∈ R

d,

pF,G(x̂) = E















d
∑

i=1

∂

∂xi
Qd(F − x̂)H(i)(F; G)















. (2.2)

Corollary 2.4 If F = (F1, ..., Fd) is a nondegenerate random vector and G∈ D
∞, then (2.2)

holds for the probability density function of the random vector F at x̂ ∈ R
d.

3 Central Limit Theorem

In this section, we give the rate of convergence of the modified estimator of the density atx̂ ∈ R
d.

Definitions and Notations
1. For h > 0 andx ∈ R

d, define| · |h by |x|h :=
√

∑d
i=1 x2

i + h. Without loss of generality, we
assume 0< h < 1.
2. For i = 1, ...,d, define the following approximation to∂

∂xi
Qd, for x ∈ R

d, ∂
∂xi

Qh
d(x) := Ad

xi

|x|dh
.

3. Then we define the approximation to the density function ofF as; forx ∈ R
d,

ph
F,G(x) := E















d
∑

i=1

∂

∂xi
Qh

d(F − x)H(i)(F; G)















. (3.1)

Obviously when performing simulations, one is also interested in obtaining confidence in-
tervals and therefore the Central Limit Theorem is useful in such a situation. In what follows
⇒ denotes weak convergence and the indexj = 1, ...,N denoteN independent copies of the
respective random variables.
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Theorem 3.1 Let Z be a random variable with standard normal distribution.And F( j) ∈ (D∞)d

and G( j) ∈ D
∞ are respectively a random vector and a random variable which have independent

identical distribution.
(i). When d= 2, set n= C

h ln 1
h

and N = C2

h2 ln 1
h

for some positive constant C fixed throughout.

Then

n

















1
N

N
∑

j=1

2
∑

i=1

∂

∂xi
Qh

2(F
( j) − x̂)H(i) (F; G)( j) − pF,G(x̂)

















=⇒
√

Cx̂
3Z −Cx̂

1C,

where H(i)(F; G)( j), i = 1, ...,d, j = 1, ...,N, denotes the weight obtained in the j-th independent
simulation (the same that generates F( j) and G( j)) and Cx̂

1, Cx̂
3 are some constants.

(ii). When d≥ 3, set n= C
h ln 1

h
and N= C2

h
d
2+1(ln 1

h )2
for some positive constant C fixed throughout.

Then

n

















1
N

N
∑

j=1

d
∑

i=1

∂

∂xi
Qh

d(F
( j) − x̂)H(i) (F; G)( j) − pF,G(x̂)

















=⇒
√

Cx̂
4Z −Cx̂

1C,

where Cx̂
1, Cx̂

4 are some constants.

Remark 3.2

(i). In the assertion of Theorem 3.1, we can freely choose the constant C. Therefore we have
that if C is small (wrt Cx̂

1), then the bias becomes small.

(ii). This theorem also gives an idea on how to choose h once n or N is fixed.

To prove Theorem 3.1, we need the following estimations, which measure the order of the
error of the approximation to the density.

Proposition 3.3 Let F be a nondegenerate random vector and G∈ D
∞, then forx̂ = (x̂1, ..., x̂d) ∈

R
d,

pF,G(x̂) − ph
F,G(x̂) = Cx̂

1h ln
1
h
+Cx̂

2h+ o(h),

where Cx̂
1 and Cx̂

2 are constants which depend onx̂, but are independent of h. The constants can
be written explicitly.

Next we compute the rate at which the variance of the estimator usingQh
d diverges.

Proposition 3.4 Let F be a nondegenerate random vector and G∈ D
∞.

(i). For d = 2 and x̂ ∈ R
d,

E

































2
∑

i=1

∂

∂xi
Qh

2(F − x̂)H(i)(F; G) − pF,G(x̂)















2
















= Cx̂
3 ln

1
h
+O(1),

where Cx̂
3 is a constant which depends onx̂, but is independent of h. The constants can be written

explicitly.
(ii). For d ≥ 3 and x̂ ∈ R

d,

E

































d
∑

i=1

∂

∂xi
Qh

d(F − x̂)H(i)(F; G) − pF,G(x̂)















2
















= Cx̂
4

1

h
d
2−1
+ o

(

1

h
d
2−1

)

,

where Cx̂
4 is a constant which depends onx̂, but is independent of h. The constants can be written

explicitly.
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Remark 3.5 In particular, for h= 0 one obtains that the variance of the Malliavin-Thalmaier
estimator is infinite.

Lemma 3.6 Under the same assumptions of Theorem 3.1, the followings hold.
(i).

E



































d
∑

j=1

∂

∂xi
Qh

d(F
(1) − x̂)H(i)(F; G)( j) − ph

F,G(x̂)

















2
















=



























Cx̂
3 ln

1
h
+O(1) if d = 2

Cx̂
4

1

h
d
2−1
+ o

(

1

h
d
2−1

)

if d ≥ 3,

where Cx̂
3, Cx̂

4 are the same constants of Proposition 3.4.
(ii). For any d≥ 2,

E



















∣

∣

∣

∣

∣

∣

∣

d
∑

j=1

∂

∂xi
Qh

d(F
(1) − x̂)H(i)(F; G)( j) − ph

F,G(x̂)

∣

∣

∣

∣

∣

∣

∣

3
















≤ O

(

1

hd− 3
2

)

.

4 Simulation 1∼ Density of2-dim. Black-Scholes Model∼
Here we give a simulation result in the case of 2-dimensionallog-normal density. In Figures 1
and 2, we show the result of the simulation of (2.2) and (3.1) at time 1. That is,

dX1
t = X1

t {0.01dt+ 0.1dW1
t + 0.2dW2

t } and dX2
t = X2

t {0.02dt+ 0.3dW1
t + 0.2dW2

t }.

We have used the Euler-Maruyama approximation with 10 time steps andN = 104 Monte Carlo
simulations at each point. As it can be seen from Figure 1, there are some points where the
estimate is unstable. This is clearly due to the infinite variance of the Malliavin-Thalmaier
estimator.

 0  40  80  120  160  200

 0 40 80 120 160 200-0.0003

-0.0002

-0.0001
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 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

density

stock 1stock 2
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Figure 1: equation (2.2)
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density

Figure 2: equation (3.1) (h = 0.01)

5 Application of the Malliavin-Thalmaier formula to Finance

In this section, we compute Greeks using the Malliavin-Thalmaier Formula. We consider a
random vectorFµ = (Fµ1, ..., F

µ

d), µ ∈ R
m, m ∈ N which depends on a parameterµ. Suppose
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thatFµ ∈ (D∞)d is a nondegenerate random vector. And letf (x1, ..., xd) be a payoff function in
a class1

A :=

{

f : R
d → R :

continuous a.e. wrt Lebesgue measure, and
there exist constantsc,a such that| f (x)| ≤ c

(1+|x|)a (a > 1)

}

.

A greek is defined forf ∈ A, as the following quantity for somej ∈ {1, ..., ,m};

∂

∂µ j
E

[

f
(

Fµ1, ..., F
µ

d

)]

.

We denote the integration with respect toph
Fµ,G(x) by Eh[·]. That is,

Eh [

f (Fµ)
]

:=
(

Rd
f (x̂)ph

Fµ,1(x̂)dx̂.

And for i, j = 1, ...,d, set

gh
i, j(y) :=

∂

∂yj

(
Rd

f (x̂)
∂

∂xi
Qh

d(y − x̂)dx̂, y ∈ R
d.

Theorem 5.1 Let k∈ {1, ...,m} be fixed. Let f∈ A. Let Fµ be a nondegenerate random vector,

which is differentiable with respect toµk. Suppose that for j= 1, ...,d,
∂Fµj
∂µk
∈ D

∞.

∂

∂µk

d
∑

i=1

E

[(
Rd

f (x̂)
∂

∂xi
Qh

d(y − x̂)dx̂H(i)

(

Fµ; 1
)

]

=

d
∑

i, j=1

E















gh
i,i(F

µ)H( j)















Fµ;
∂Fµj
∂µk





























. (5.1)

Moreover if we assume that for all i= 1, ...,d, there exists some gi,i such that ghi,i → gi,i a.e. as
h→ 0, then

∂

∂µk
Eh

[

f (Fµ)
]

=

d
∑

i, j=1

E















gh
i,i(F

µ)H( j)















Fµ;
∂Fµj
∂µk





























−→
d

∑

i, j=1

E















gi,i(F
µ)H( j)















Fµ;
∂Fµj
∂µk





























=
∂

∂µk
E
[

f (Fµ)
]

ash→ 0. (5.2)

Remark 5.2

(i). The expression in Theorem 5.1 is obviously not unique; e.g.

(5.1) =
d

∑

i, j=1

E















gh
i, j(F

µ)H(i)















Fµ;
∂Fµj
∂µk





























.

1 Note that in the case of a put option, if we define the payoff function (K − x)+ = (K − x)1[0,K](x) then
(K − x)+ ∈ A.

In a digital put option case, the payoff function is1[0,K](x). Therefore it is inA.
Next in a digital call option case, the payoff function1[K,∞)(x) does not go to 0 asx→ ∞. But since stocks do

not take negative value, then we can transform as it follows,

1[K,∞)(x) = 1− 1[0,K)(x).

And now we want to calculate Greeks, that is, derivation of the term 1 is 0. It is enough to calculate the term
1[0,K)(x), which has a compact support.

Finally if we want to compute a Greeks for call option case (x−K)+, then one uses directlygi andgh
i after taking

the derivative. Although it is known that then a localization is needed.
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(ii). If gh
i, j, i, j = 1, ...,d has an explicit representation, then one can calculate Greeks easily.

If we do not have an explicit expression for the multiple integral then one can use any
approximation for multiple Lebesgue integrals. An exampleof the case that gi,i has an
explicit expression. In the digital put case, let d= 2 and f(x1, x2) = 1(0 ≤ x1 ≤ K1)1(0 ≤
x2 ≤ K2) ∈ A where K1 and K2 are positive constants. Then

g1,1(y) = A2

{

arctan
y2

y1
− arctan

y2 − K2

y1
− arctan

y2

y1 − K1
+ arctan

y2 − K2

y1 − K1

}

,

g2,2(y) = A2

{

arctan
y1

y2
− arctan

y1 − K1

y2
− arctan

y1

y2 − K2
+ arctan

y1 − K1

y2 − K2

}

.

(5.3)

These expressions are obtained after taking limits of gh
i,i(y) as h→ 0 for i = 1,2.

(iii). If we use the classical expression of the density, for exampleProposition 2.1.5 in Nualart
[8], then we need a multi dimensional Skorohod integral to write Greeks explicitly.

(iv). We remark that in Theorem 5.1, H(i) requires only one Skorohod integral. Even if higher
derivatives with respect toµ are considered this fact remains unchanged.

6 Simulation 2∼ Delta of Digital Option in Heston Model ∼
Now we consider an example. We calculate Delta in a kind of a digital option and the asset is
characterized by Heston model. First we define the Heston model as follows;

dSt = µStdt+
√

1− ρ2
√

vtStdWS
t + ρ

√
vtStdWv

t ,

dvt = κ(θ − vt)dt+ σ
√

vtdWv
t ,

where their initial values for the stock price processS and the volatility processv ares0 andv0,
respectively.µ is a constant,κ, θ, σ are positive constants andρ ∈ [−1,1] is a constant.WS

t and
Wv

t are Brownian motion and independent of each other.
We study the Delta of the following option

E
[

e−rT 1(KS ≤ ST)1(vT ≤ Kv)
]

,

wherer expresses a constant interest rate. Without loss of generality, we assume thatr = 0. KS

andKv are strike prices of stock and volatility respectively.
Then the Delta of above option is;

∂

∂s0
E
[

1(KS ≤ ST)1(vT ≤ Kv)
]

= E



















1(KS ≤ ST)1(vT ≤ Kv)
WS

T
√

1− ρ2s0

∫ T

0

√
vudu



















. (6.1)

We simulate above Delta by using the following parameters;s0 = 100, µ = 0.1, v0 =

0.08, κ = 2, θ = 0.08, σ = 0.2, KS = 100, Kv = 0.08, ρ = 0.2, T = 1. For the simulation
of St and vt, we use the Euler-Maruyama approximation with 50 time stepsand for pricing
simulation, then a number of Monte Carlo simulationN = 107 times. The gradient of Figure 3
is about 0.008, and the Delta by equation (6.1) and (5.2) (where we put−g1,1 and−g2,2 in (5.3)
instead ofgi,i in (5.2)) is both close to 0.008. (Figure 4 and Figure 5).
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Remark 6.1

(i). The Heston model leads to an incomplete market. Therefore there are many equivalent
martingale measures. We do not discuss that problem here.

(ii). In the Heston model, one has to prove the Malliavin differentiability of v. This result can
be found in Alos, Ewald [1]. In fact, the volatility process vt is not inD

∞. But since s0
depends on only St and vt is independent of WSt , the above result follows.

(iii). We have chosen the above parameter so as to ensure the existence and uniqueness of the
equation defining v and so that is strictly positive with probability one. For more details,
see Section 6.2.2. in Lamberton, Lapeyre [6].
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MC Delta (6.1) Delta (5.2) Variance (6.1) Variance (5.2)
103 0.00954274 0.00843297 0.000392088 0.000355012
104 0.0081553 0.00808107 0.000345127 0.000338378
105 0.0082723 0.00825764 0.00034328 0.000343148
106 0.00828167 0.00832003 0.000345285 0.000346696
107 0.00830052 0.00830213 0.000346419 0.000345385
108 0.00830217 0.00829842 0.000346655 0.000345429

Figure 5: Delta and Variance of (6.1) and (5.2)
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