Probability seminar 20050915 thu 15:45-17:15@518 Martin T. Barlow (University of British Columbia) Jump processes of mixed order with R. Bass, Z. Chen, M. Kassmann

1 Review.

1.1 Harmonic inequalities.

Connections between

- (i) self adjoint operator L
- (ii) Dirichlet form $(\mathcal{E}, \mathcal{F})$
- (iii) Markov process $(X_t, t \ge 0)$

Harmonic functions $Lh(x) = 0, x \in D$.

Heat equation $\dot{u} = Lu$ (HE).

If X has transition density $p(t, x, y), x, y \in \mathbb{R}^d$; $P^x(X_t \in B) = \int_B p(t, x, y) dy$, then $\dot{p} = Lp$.

Question: What kind of regularity properties does one have for the harmonic functions and the solutions of (HE)?

Example (historically very important): $L = \sum_{i} \frac{\partial}{\partial x_{i}} (a_{ij}(x) \frac{\partial}{\partial x_{j}}) = \nabla \cdot (a\nabla);$

 $a_{ij}(x) = a_{ji}(x)$: measurable in x.

Uniformly elliptic: $0 < \lambda_1 |\xi|^2 \leq \xi^T a(x) \xi \leq \lambda_2 |\xi|^2, \ \forall \xi \in \mathbb{R}^d.$ Energy integral: For $f, g \in C_0^\infty$ $(-Lf, g) = \int -\nabla \cdot (a\nabla f)g = \int (\nabla g)^T a\nabla f = \mathcal{E}(f, g).$

If $a_{ij}(x)$ is C^2 in x, standard methods (Schauder estimates, etc.) give continuity of solns of (HE).

Note, without differentiability of a_{ij} we can still make sence of (HE) by considering weak solutions. Then what if $a_{ij}(x)$ just measurable in x?

This problem was solved by de Giorgi, Moser, Nash (1959–61). (Fields-prize-worth accomplishment, but since 3 people solved it, it wasn't aworded. Nash later won Nobel prize in economy.)

Moser (1961): Elliptic Harnack inequality for $\nabla \cdot (a\nabla)$ (as a tool to solve the problem).

Why important? For $F : \mathbb{R} \to [1,2] \in C^{\infty}$, consider a non linear PDE $\nabla \cdot (F(u)\nabla u) = 0$.

Suppose we knew the solution u and if we put a = F(u), then $\nabla \cdot (a\nabla u) = 0$. If you know that a is continuous, then a general theory on harmonic equation implies that u exists and is continuous, and we have a consistent solution. Since we don't know u in the beginning, it was important to start just with assumption that a is measurable.

Definition. Elliptic Harnack inequality (EHI): Harnack inequality for Lh = 0 (Simpler to explain than Harnack inequality for heat equation):

L (or $(\mathcal{E}, \mathcal{F})$ or X) satisfies EHI if $\exists C_H < \infty$, s.t., if $B = Ball(x_0, R)$ and h is harmonic in B with $h \ge 0$, then

$$\sup_{B(x_0,R/2)} h \leq C_H \inf_{B(x_0,R/2)} h.$$

Example: $h(x) = P^x(X_\tau \in \Gamma).$

What EHI says: Mixing goes on inside a ball.

There are many applications, e.g., Strook pushed Nash's results from probability setting.

1.2 Jump process.

- (i) Arise naturally in probability theory.
 - $H \subset \mathbb{R}^d$: hyperplane. Diffusion in \mathbb{R}^d restricted on hyperplane H, is a jump process.
- (ii) Arises sometimes in analysis ('Trace of diffusion').
- (iii) Barlow Bass Gui (jump process related to a certain non-linear PDE)

Fundamental object — jump rate $x \to y$: $n(x, y) = n(y, x), x, y \in \mathbb{R}^d$. Energy form: $\mathcal{E} = \mathcal{E}[n]$; $\mathcal{E}[n](f, f) = \int_{\mathbb{R}^d} (f(x) - f(y))^2 n(x, y) \, dx \, dy, x \in L^2$. (Maybe ∞ .) Necessary for a 'nice' process: $N_1(x) := \int_{B(x,1)^c} n(x, y) \, dy \in L^1_{loc}$ (so that the process does not make too many big jumps). $M_1(x) := \int_{B(x,1)^c} |x - y|^2 n(x, y) \, dy \in L^1_{loc}$. Note that these imply that if $f \in C^1_c(\mathbb{R}^d)$, then $\mathcal{E}[n](f, f) < \infty$. $Lf(x) = p.v. \int (f(y) - f(x))n(x, y) \, dx \, dy, f \in C^2_c(\mathbb{R}^d)$ Simplest example: stable process with index $\alpha \ (\in (0, 2))$. $n(x, y) = |x - y|^{-d - \alpha}$: Lévy process (translation invariant). Properties:

(i) $E^0[e^{\sqrt{-1}\lambda X_t}] = e^{-t|\lambda|^{\alpha}}$. ($\alpha = 2$ is BM.) (ii) For d = 1, X point recurrent $\Leftrightarrow \alpha \in (1, 2)$.

Long studied since 1930s.

Perturabation of stabled process. Study started only for a few years (Bass–Leven, Kumagai–Chen, on general metric spaces).

 $c_1|x-y|^{-d-\alpha} \leq n(x,y) = n(y,x) \leq c_2|x-y|^{-d-\alpha}$ (the bounds which we will below write $n \approx |x-y|^{-d-\alpha}$).

May not be continuous, and may not be translationally invariant (Fourier transform may not work!). Results:

- (i) \exists strong Markov (Feller) process Y associated with Dirichlet form $(\mathcal{E}[n], \mathcal{F}[n])$
- (ii) Y has a transition density $p(t, x, y) \asymp t^{-d/\alpha} \wedge t |x y|^{-d-\alpha}$
- (iii) EHI holds for Y
- (iv) Harmonic functions are continuous

2 Problem and results.

Want to study n(x, y) satisfying

(A1) $K_1|x-y|^{-d-\alpha} \leq n(x,y) \leq K_2|x-y|^{-d-\beta}, |x-y| < 1$, for $K_1 > 0, K_2 > 0, 0 < \alpha < \beta < 2$. (A2) n(x,y) = 0 if |x-y| > 1 (could be relaxed).

(Motivation is to generalize previous, satisfactory results; not from specific examples in mind.)

Questions:

- (i) Existence of strong Markov process associated with $\mathcal{E}[n]$
- (ii) Continuity of harmonic functions
- (iii) Harnack inequalities, etc.

regularity.

Want: $\forall f \in \mathcal{F}[n] \exists g_n \in \mathcal{F}[n] \cap C(\mathbb{R}^n); \ \mathcal{E}_1(f - g_n) = \mathcal{E}(f - g_n) + \|f - g\|_2^2 \to 0$ Straightforward estimates doesn't give this. Instead: look at $(\mathcal{E}[n], \mathcal{F}')$ where $\mathcal{F}' = C_c^1(\mathbb{R}^d)^{\mathcal{E}_1}$ (We know

that C_c^1 is of finite energy, so this is regular by definition.)

Penalty for cheating:

- (i) It may be hard to prove that given f is in \mathcal{F}' .
- (ii) Need to prove process Y associated with $(\mathcal{E}, \mathcal{F}')$ is conservative (i.e., do not go to infinity in finite time).

Results.

Theorem 1.

- (i) \exists Hunt process Y on $S = \mathbb{R}^d \setminus N$ (N a null set) associated with $(\mathcal{E}, \mathcal{F}')$.
- (ii) Y has transition density p(t, x, y) with $p(t, x, y) \leq c_1 t^{-\alpha/d}$.
- (iii) $\exists t_0 = t_0(\alpha, \beta, \kappa_1, \kappa_2); P^x[\sup_{s \le t_0} |Y_s x| \ge 1/4] \le 1/4.$

(This and strong Markov imply the next:)

- (iv) Y is conservative
- (v) Let $B = B(x_0, 2)$, Y^B be Y killed on exiting B, and $P^B(t, x, y)$ be transition density of Y^B . Then $P^B(t, x, y) \ge C_1, x, y \in B(x_0, 1), 1/2 \le t \le 2$.

(This means that there are no sets which the process avoids; minimal regularity.)

Theorem 2. EHI holds for $B(x_0, 2)$.

 $Proofs \ use \ Nash-Stroock \ ideas.$

Theorem 3. $\exists n(x,y)$ satisfying (A1), (A2) and harmonic h(x) s.t., h is not uniformly continuous.

Example of h in Theorem 3 for d = 2: Starting with a Lévy process $n_0(x, y) = n_0(0, y - x)$ and constants $0 < a_1 < a_2 < 2$, let $m(x_1, x_2) = n_0(0, (x_1, x_2)) = |x_1|^{-a_1-2} \wedge |x_2|^{-a_2-2}$, $|x_1|, |x_2| \leq 1$, and $m(x_1, x_2) = 0$, otherwise.

Let $Y_t = (Y_t^1, Y_t^2)$ be its Levy process. Projection of Levy is Levy, so Y_t^1 and Y_t^2 are 1dim Levy (not independent), whose jump measures are given by integration:

 $n_1(x_1) = \int_{-1}^1 m_1(x_1, x_2) dx_2 = -c_1 + c_2 |x_1|^{-1-\alpha_1}$ and $n_2(x_2) = \int_{-1}^1 m_1(x_1, x_2) dx_1 = -c_3 + c_4 |x_1|^{-1-\alpha_2}.$ $Y^1 \text{ and } Y^2 \text{ are essentially (locally) stable with indices } \alpha_1, \alpha_2, \text{ where } \alpha_1 = (a_1 + 1)(a_2 + 1)/(a_2 + 2) - 1.$

Lemma 4.

- (i) n_0 satisfies (A1) with $\alpha = \alpha_1, \beta = \alpha_2$.
- (ii) We can choose a_1 , a_2 s.t., $0 < \alpha_1 < \alpha_2 < 1$.

Set $V = \{(x_1, x_2) \mid |x_1| < |x_2|\}$ and let $Y_0 = 0$. Z_t : 1-dim stable $\alpha \in (0, 1)$. Then $\lim_{t \downarrow 0} |Z_t| t^{-1/\alpha - \epsilon} = \infty$, a.s. \diamond

 \diamond

 \diamond

$$\begin{split} &\lim_{t\downarrow 0} |Z_t|t^{-1/\alpha+\epsilon} = 0, \text{ a.s.} \\ &\text{So, } \exists \delta(w); \ (\forall 0 < t < \delta(w)) \\ &0 < |Y_t^1| < t^{1/\alpha_1 - eps} < t^{1/\alpha_2 + eps} < |Y_t^2|. \\ &\text{So for short time the process } Y \text{ is in the cone } V. \\ &\text{Now define } n(x,y) = m(|x_1 - y_1|, |x_2 - y_2|) \text{ if } x, y \in V, |x - y| < 1, \\ &\text{and } n(x,y) = m(|x_2 - y_2|, |x_1 - y_1|) \text{ if } x, y \in V^c, \\ &\text{and } n(x,y) = |x_1 - y_1|^{-2-a_1} \wedge |x_2 - y_2|^{-2-a_2} \text{ if } x_1 \in V, y \in V^c \text{ or } y \in V, x \in V^c \\ &\text{and } n(x,y) = 0 \text{ if } |x - y| \geqq 1. \\ &X: \text{ Corresponding process.} \end{split}$$

If $X_0 = x \in V$ close to 0, X stays in V for a positive time.

If $X_0 = x' \in V^c$ then X stays in V^c for a positive time. (In fact it moves somewhat along positive x_1 axis for some time.)

Put $D = (-\eta, \eta)^2$, $f(x) = 1_{D \cap V}$, and $h(x) = E^x f(X_{\tau_D})$. Then h is not continuous at 0 (because it is the probability that X exists the box from y direction).