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Probability seminar 20050915 thu 15:45-17:15@518
Martin T. Barlow (University of British Columbia)
Jump processes of mixed order
with R. Bass, Z. Chen, M. Kassmann

1 Review.

1.1 Harmonic inequalities.

Connections between

(i) self adjoint operator L

(ii) Dirichlet form (E,F)
(iii) Markov process (Xt, t � 0)

Harmonic functions Lh(x) = 0, x ∈ D.
Heat equation u̇ = Lu (HE).

If X has transition density p(t, x, y), x, y ∈ R
d; P x(Xt ∈ B) =

∫
B

p(t, x, y)dy, then ṗ = Lp.

Question: What kind of regularity properties does one have for the harmonic functions and the
solutions of (HE)?

Example (historically very important): L =
∑

i

∂

∂xi
(aij(x)

∂

∂xj
) = ∇ · (a∇);

aij(x) = aji(x): measurable in x.
Uniformlly elliptic: 0 < λ1|ξ|2 � ξT a(x)ξ � λ2|ξ|2, ∀ξ ∈ R

d.

Energy integral: For f, g ∈ C∞
0 (−Lf, g) =

∫
−∇ · (a∇f)g =

∫
(∇g)T a∇f = E(f, g).

If aij(x) is C2 in x, standard methods (Schauder estimates, etc.) give continuity of solns of (HE).
Note, without differentiability of aij we can still make sence of (HE) by considering weak solutions.

Then what if aij(x) just measurable in x?
This problem was solved by de Giorgi, Moser, Nash (1959–61). (Fields-prize-worth accomplishment,

but since 3 people solved it, it wasn’t aworded. Nash later won Nobel prize in economy.)
Moser (1961): Elliptic Harnack inequality for ∇ · (a∇) (as a tool to solve the problem).

Why important? For F : R → [1, 2] ∈ C∞, consider a non linear PDE ∇ · (F (u)∇u) = 0.
Suppose we knew the solution u and if we put a = F (u), then ∇ · (a∇u) = 0. If you know that a is

continuous, then a general theory on harmonic equation implies that u exists and is continuous, and we
have a consistent solution. Since we don’t know u in the beginning, it was important to start just with
assumption that a is measurable.

Definition. Elliptic Harnack inequality (EHI): Harnack inequality for Lh = 0 (Simpler to explain than
Harnack inequality for heat equation):

L ( or (E,F) or X) satisfies EHI if ∃CH < ∞, s.t., if B = Ball(x0, R) and h is harmonic in B with
h � 0, then

sup
B(x0,R/2)

h � CH inf
B(x0,R/2)

h. �

Example: h(x) = P x(Xτ ∈ Γ).
What EHI says: Mixing goes on inside a ball.
There are many applications, e.g., Strook pushed Nash’s results from probability setting.
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1.2 Jump process.

(i) Arise naturally in probability theory.
H ⊂ R

d: hyperplane. Diffusion in R
d restricted on hyperplane H , is a jump process.

(ii) Arises sometimes in analysis (‘Trace of diffusion’).
(iii) Barlow – Bass – Gui (jump process related to a certain non-linear PDE)

Fundamental object — jump rate x → y: n(x, y) = n(y, x), x, y ∈ R
d.

Energy form: E = E [n];

E [n](f, f) =
∫

Rd

(f(x) − f(y))2n(x, y) dx dy, x ∈ L2. (Maybe ∞.)

Necessary for a ‘nice’ process:

N1(x) :=
∫

B(x,1)c

n(x, y) dy ∈ L1
loc

(so that the process does not make too many big jumps).

M1(x) :=
∫

B(x,1)c

|x − y|2n(x, y) dy ∈ L1
loc.

Note that these imply that if f ∈ C1
c (Rd), then E [n](f, f) < ∞.

Lf (x) = p.v.

∫
(f(y) − f(x))n(x, y) dx dy, f ∈ C2

c (Rd)

Simplest example: stable process with index α (∈ (0, 2)).
n(x, y) = |x − y|−d−α: Lévy process (translation invariant).
Properties:

(i) E0[e
√−1λXt ] = e−t|λ|α . (α = 2 is BM.)

(ii) For d = 1, X point recurrent ⇔ α ∈ (1, 2).

Long studied since 1930s.

Perturabation of stabled process. Study started only for a few years (Bass–Leven, Kumagai–Chen,
on general metric spaces).

c1|x − y|−d−α � n(x, y) = n(y, x) � c2|x − y|−d−α

(the bounds which we will below write n 	 |x − y|−d−α).
May not be continuous, and may not be translationally invariant (Fourier transform may not work!).
Results:

(i) ∃ strong Markov (Feller) process Y associated with Dirichlet form (E[n],F [n])
(ii) Y has a transition density p(t, x, y) 	 t−d/α ∧ t|x − y|−d−α

(iii) EHI holds for Y

(iv) Harmonic functions are continuous

2 Problem and results.

Want to study n(x, y) satisfying
(A1) K1|x − y|−d−α � n(x, y) � K2|x − y|−d−β , |x − y| < 1, for K1 > 0, K2 > 0, 0 < α < β < 2.
(A2) n(x, y) = 0 if |x − y| > 1 (could be relaxed).
(Motivation is to generalize previous, satisfactory results; not from specific examples in mind.)

Questions:

(i) Existence of strong Markov process associated with E [n]
(ii) Continuity of harmonic functions
(iii) Harnack inequalities, etc.
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Given regular Dirichlet form (E,F), general theory gives Hunt processes (in particular, strong Markov).
But: a difficulty. A natural thing is to look at (E[n],F [n]), which turned out to be hard to prove

regularity.
Want: ∀f ∈ F [n]∃gn ∈ F [n] ∩ C(Rn); E1(f − gn) = E(f − gn) + ‖f − g‖2

2 → 0
Straightforward estimates doesn’t give this. Instead: look at (E[n],F ′) where F ′ = ¯C1

c (Rd)
E1 (We know

that C1
c is of finite energy, so this is regular by definition.)

Penalty for cheating:

(i) It may be hard to prove that given f is in F ′.
(ii) Need to prove process Y associated with (E,F ′) is conservative (i.e., do not go to infinity in finite

time).

Results.

Theorem 1.

(i) ∃ Hunt process Y on S = R
d \ N (N a null set) associated with (E,F ′).

(ii) Y has transition density p(t, x, y) with p(t, x, y) � c1t
−α/d.

(iii) ∃t0 = t0(α, β, κ1, κ2); P x[sup
s�t0

|Ys − x| � 1/4] � 1/4.

(This and strong Markov imply the next:)
(iv) Y is conservative
(v) Let B = B(x0, 2), Y B be Y killed on exiting B, and PB(t, x, y) be transition density of Y B. Then

PB(t, x, y) � C1, x, y ∈ B(x0, 1), 1/2 � t � 2.
(This means that there are no sets which the process avoids; minimal regularity.) �

Theorem 2. EHI holds for B(x0, 2). �

Proofs use Nash – Stroock ideas.

Theorem 3. ∃n(x, y) satisfying (A1), (A2) and harmonic h(x) s.t., h is not uniformly continuous. �

Example of h in Theorem 3 for d = 2: Starting with a Lévy process n0(x, y) = n0(0, y − x) and
constants 0 < a1 < a2 < 2, let m(x1, x2) = n0(0, (x1, x2)) = |x1|−a1−2 ∧ |x2|−a2−2, |x1|, |x2| � 1, and
m(x1, x2) = 0, otherwise.

Let Yt = (Y 1
t , Y 2

t ) be its Levy process. Projection of Levy is Levy, so Y 1
t and Y 2

t are 1dim Levy (not
independent), whose jump measures are given by integration:

n1(x1) =
∫ 1

−1

m1(x1, x2)dx2 = −c1 + c2|x1|−1−α1

and

n2(x2) =
∫ 1

−1

m1(x1, x2)dx1 = −c3 + c4|x1|−1−α2 .

Y 1 and Y 2 are essentially (locally) stable with indices α1, α2, where α1 = (a1 +1)(a2 +1)/(a2 +2)−1.

Lemma 4.

(i) n0 satisfies (A1) with α = α1, β = α2.
(ii) We can choose a1, a2 s.t., 0 < α1 < α2 < 1. �

Set V = {(x1, x2) | |x1| < |x2|} and let Y0 = 0.
Zt: 1-dim stable α ∈ (0, 1). Then
lim
t↓0

|Zt|t−1/α−ε = ∞, a.s.
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lim
t↓0

|Zt|t−1/α+ε = 0, a.s.

So, ∃δ(w); (∀0 < t < δ(w))
0 < |Y 1

t | < t1/α1−eps < t1/α2+eps < |Y 2
t |.

So for short time the process Y is in the cone V .
Now define n(x, y) = m(|x1 − y1|, |x2 − y2|) if x, y ∈ V, |x − y| < 1,
and n(x, y) = m(|x2 − y2|, |x1 − y1|) if x, y ∈ V c,
and n(x, y) = |x1 − y1|−2−a1 ∧ |x2 − y2|−2−a2 if x1 ∈ V, y ∈ V c or y ∈ V, x ∈ V c

and n(x, y) = 0 if |x − y| � 1.
X : Corresponding process.
Behavior of X :
If X0 = x ∈ V close to 0, X stays in V for a positive time.
If X0 = x′ ∈ V c then X stays in V c for a positive time. (In fact it moves somewhat along positive x1

axis for some time.)
Put D = (−η, η)2, f(x) = 1D∩V , and h(x) = Exf(XτD ). Then h is not continuous at 0 (because it is

the probability that X exists the box from y direction).


