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Microscopic phenomena

� Each particle moves randomly .

� There are some interactions among particles.

1



Macroscopic phenomena
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diffusive phenomena

� We observe smooth time evolution.

� or they are stationary .
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discrete free interface model (static)

The interface is a function ϕ : Z
d → R (a “graph” of R-

valued function), of which energy on compact Λ ⊂ Z
d is

given by the Hamiltonian

HΛ(ϕ) =
1

2

∑
i,j∈Λ

V (ϕ(j)− ϕ(i)) +
∑

i∈Λ,j �∈Λ
V (ϕ(j)− ϕ(i)),

with V : R→ R even, uniformly convex, V (0) = 0.

The statistical properties of the interface are described by

Gibbs measure, a probability measure Pψ,βΛ on R
Z
d
= {ϕ : Z

d→
R}
P
ψ,β
Λ (dϕ) = (Zψ,βΛ )−1 exp{−βHΛ(ϕ)}

∏
i∈Λ

dϕi
∏
j �∈Λ

δψ(j)(dϕj)
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dynamical point of view

“Gibbs states become more interesting when they are

viewed as the equilibrium state of a dynamical system

and, in addition, the dynamics often provides a nat-

ural approach to the analysis of Gibbs state.”—D.W.

Stroock, Logarithmic Sobolev Inequalities for Gibbs States,

LNM 1563, pp. 194–228 (1993).

� There may be several dynamical systems which posesses

the Gibbs state as equilibrium.

� In this talk, we investigate a continuous interface on one-

dimensional continuum fields.

Interface = ϕ : R→ R.

� We will choose stochastic PDEs as a dynamic model (very

natural, I believe!).
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linear SDE

dX(t) = A(t)X(t)dt+ σ(t)dW (t).

The solution is

X(t) = Φ(t)

(
X(0) +

∫ t

0
Φ(s)−1σ(s)dW (s)

)
.

Φ(t) solves dΦ(t) = A(t)Φ(t)dt, Φ(0) = Id.

� m(t) := E[X(t)].

� ρ(s, t) := E[(X(s)−m(s))⊗ (X(t)−m(t))].

� V (t) := ρ(t, t).

ṁ(t) = A(t)m(t)

V̇ (t) = A(t)V (t) + σ(t)σ(t)†+ V (t)†A(t)† (1)
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stationary solutions to SDEs
Assume A(t) ≡ A, σ(t) ≡ σ. (Φ(t) = exp{tA}).

equilibrium⇒ V (t) ≡ Const.

V (t) = etAV (0)etA
†
+

∫ t

0
esAσσ†esA† ds

It is needed

etAV (0)etA
†
=

∫ ∞
t

esAσσ†esA† ds

⇒ V (0) =

∫ ∞
0

esAσσ†esA† ds

⇒ V (t) ≡ V, AV + σσ†+ V A† = 0

� A must be negative definite (all e.v.’s of A < 0.).
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distribution of Langevin’s equation

Let us consider the following SDE.{
dX(t) = AX(t) dt+ σ dW (t)
X(0) = ξ

Then we have Mehler’s formula:

P (X(t) ∈ dx) =

1√
(2π)d|V |

exp

{
−1

2

〈
x−m(t), V (t)−1(x−m(t))

〉}
,

where V (t) is given by (1).
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equilibrium of Langevin’s equation

Suppose that all the eigen values of A have negative real

parts and ξ is a Gaussian random variable with zero-mean

and covariance V =
∫∞
0 esAσσ†esA† ds. Then X(t) is a sta-

tionary, zero-mean Gaussian process of which covariance

function is given by

ρ(s, t) =

{
e(s−t)AV, 0 ≤ t ≤ s <∞
V e(t−s)A†, 0 ≤ s ≤ t <∞.

� linear case: all quantity are computable!

� General definitions of equilibrium?
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Invariant measures
Let X(t) be a S-valued process on (Ω,F , P ).

A probability measure µ on (S,S ) is called invariant if

X(0) is µ-distributed (P (X(0))−1 = µ) then X(t) is also

µ-distributed, that is,

Pµ(X(t) ∈ A) = µ(A) (= Pµ(X(0) ∈ A)).

� Px: prob. meas on (Ω,F) s.t. Px(X(0) = x) = 1.

� Pµ(A) :=
∫
S Px(A)µ(dx), i.e., a probability (law) on (Ω,F)

that the Markov process X(t) has initial distribution µ.
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Usuful formulations
Px(x(t) ∈ A) = Ex[1A(X(t))] leads us . . .

A prob. meas. µ on (S,S ) is invariant

⇐⇒
∫
S
Ex[F (X(t))]µ(dx) =

∫
S
F (x)µ(dx).

Similary, we may formulate

A prob. meas. µ on (S,S ) is invariant

⇐⇒ Eµ[F (X(t))] = Eµ[F (X(0))].

The test function F may be taken from a measure deter-

mining family of (S,S ) (Cb(S) etc.).

11



reversible measure
Let X(t) be a S-valued process on (Ω,F , P ).

A probability measure µ on (S,S ) is called reversible if

X(0) is µ-distributed (P (X(0))−1 = µ) then

X(0) ∈ A −→ X(t) ∈ B
X(t) ∈ A −→ X(0) ∈ B

occurs in the same probability for every t > 0, that is,

Pµ(X(0) ∈ A ∧X(t) ∈ B) = Pµ(X(0) ∈ B ∧X(t) ∈ A).

The reversible measure µ is also an invariant measure for

X(t). We can reformulate the above by∫
A
Px(X(t) ∈ B)µ(dx) =

∫
B
Px(X(t) ∈ A)µ(dx).
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Usuful formulations
In a similar manner to the case of invariant measures. . .

A prob. meas. µ on (S,S ) is reversible ⇐⇒∫
S
F (x)Ex[G(X(t))]µ(dx) =

∫
S
G(x)Ex[F (X(t))]µ(dx).

Similary, we may formulate

A prob. meas. µ on (S,S ) is reversible ⇐⇒
Eµ[F (X(0))G(X(t))] = Eµ[G(X(0))F (X(t))].

The test function F may be taken from a measure deter-

mining family of (S,S ) (Cb(S) etc.).
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Langevin’s equation again

dX(t) = 1
2AX(t) dt+ dB(t), A: negative definite. Suppose

also that A is symmetric.

This time, AV = V A and 2A = −V −1 for V =
∫∞
0 e2sA ds.

The reversible measure µ on R
d for Langevin’s dynamics

is given by

µ(dx) =
1

Z
exp

{
1

2
〈Ax, x〉

}
dx.
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perturbations of Langevin’s Dynamics

dX(t) =
1

2
(AX(t)−∇U(X(t))) dt+ dB(t).

To avoid the difficulty from the integrability, assume U is
bounded with bounded derivatives.
� dY (t) = 1

2AY (t) dt+ dB(t).
Then the law Q of Y on C([0, T ],Rd) is given by Cameron–
Martin–Maruyama–Girsanov.

� The law R of X is also concretely given.
� Easily compute dR/dQ.
� Using Itô formula allows us to escape the stochastic in-

tegral.

The reversible measure µ for X(t) is given by

µ(dx) =
1

Z
exp

{
−U(x) +

1

2
〈Ax, x〉

}
dx.
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summary of reversible measures

Note that ∇(1
2 〈Ax, x〉) = Ax.

Let V : R
d → R given (called, potential, energy, or Hamil-

tonian). A reversible measure of the dynamics obeying

the following stochastic ordinary differential equation

dX(t) = −1

2
∇V (X(t)) dt+ dB(t)

is given by the following (Gibbs type) formula:

µ(dx) =
1

Z
exp{−V (x)} dx.

Z is the normalizing constant (making µ probability mea-

sure) and is sometimes called a partition function.

However, is the reversible measure unique?
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Analytic quantity

We fix an SDE: dX(t) = −1
2∇V (X(t)) dt+ dB(t). The gen-

erator of X is defined by

L :=
1

2
∆− 1

2
∇V · ∇,

namely

(Lf)(x) =
1

2
(∆f)(x)− 1

2
〈∇V (x),∇f(x)〉 .

Let µ(dx) = Z−1 exp{−V (x)} dx be a reversible measure of X.

Define a bilinear form E by

E (f, g) :=
1

2

∫
Rd
〈∇f,∇g〉µ(dx).

for nice functions f, g : R
d → R.
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integration by parts w.r.t µ
Suppose lim

|x|→∞
V (x) = +∞. Straightforward computation

leads us to,

1

2

∫
Rd
〈∇f,∇g〉 µ(dx) = −

∫
Rd

(Lf)(x)g(x)µ(dx)

= −
∫

Rd
(Lg)(x)f(x)µ(dx).

� under µ, L can be considered as a usual second order

differential operator.

� L makes it possible to execute the calculus on a Gibbs

state µ.
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entropy

µ, ν: two probability measures on R
d.

Define a relative entropy of µ with respect to ν by

H(µ|ν) :=

⎧⎨
⎩

∫
Rd

dµ

dν
log

dµ

dν
ν(dx) µ� ν

∞ otherwise.

If µ(dx) = f(x) ν(dx), H(µ|ν) =
∫
f(x) log f(x) ν(dx).

Somebody may assert that this H must be called “negative”

entropy!
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log-Sobolev inequality

If µ(dx) = f(x) ν(dx), we have H(µ|ν) ≤ CE (
√
f,
√
f),

namely,∫
Rd
f(x) log f(x) ν(dx) ≤ C

∫
Rd

〈
∇

√
f(x),∇

√
f(x)

〉
ν(dx).

� define (Ptf)(x) := Ex[f(X(t))] and gt(x) := Ptf(x).

� check that∫
f(x) log f(x)ν(dx) = − ∫∞

0
d
dt

∫
gt(x) log gt(x) ν(dx)dt.

� note that d
dtPt = LPt.

It is easy to see

‖ν − µ‖2total var ≤ 2H(µ|ν).
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convergence of dynamics

µt(dx): distribution of X(t) on R
d.

Assume µt(dx) = ft(x)µ(dx) and H(µ0|µ) <∞.

Assume moreover that µt(dx) is absolutely continuous with

respect to dx. Then we have

d

dt
H(µt|µ) = −4E (

√
ft,

√
ft).

Combining with log-Sobolev inequality, we have

H(µt|µ) ≤ e−4t/CH(µ0|µ).
That is, the law of X(t) converges to the reversible distribu-

tion exponentially fast.
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Infinite dimensional case

Define a linear operator Af(x) = d2

dx2
f(x) on L2(0,1) with

a domain the completion of D(A) := {f ∈ C2(0,1); f(0) =

f(1) = 0}.
Then the eigen space of A is clearly {sinnπx}∞n=1 and the

eigen values are {−n2π}, namely A is a strictly negative defi-

nite (unbounded) operator.

� If A is considered with Neumann conditions (”1” is an

eigen function), or over R, A is NOT negative.

� Today I always assume A is considered with Dirichlet con-

ditions. Such a twice differential operator will be simply de-

noted by ∆. (∆ always denotes the closed Laplacian with

Dirichlet boundary conditions).
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Stochastic Partial Differential Equations
Let us consider the follwing SDE:

dX(t) =
1

2
∆X(t) dt+ dB(t).

This may be called a “stochastic partial differential equation”.

� ∆ is unbounded (non continuous). The Itô formula may

fail. How to handle such an operator?

� B(t) is “L2-valued”-Brownian motion? Does it mean

Gaussian distributed on L2? In infinite dimension, we need

to pay attentions to handle such measures.

If we were able to reach the “solution”, it may have a re-

versible measure µ “defined” by

µ(dw) =
1

Z
exp

{
1

2
〈∆w,w〉

}
dw,

where dw denotes the Feynman measure, possibly infinite di-

mensional analogue of Lebesgue measure.
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Gaussian measure on a Banach space B

We call µ, a probability measure on B, Gaussian if for ev-

ery φ ∈ B∗, considered as a random variable on (B,B(B), µ),

the law of φ is Gaussian measure on (R,B(R)).

A linear subspace H ⊂ B, with Hilbert norm | · |H, is said

to be a reproducing kernel space for µ if H is complete,

continuously embedded in B such that, for every φ ∈ B∗,
the law of φ is zero-mean Gaussian with covariance |φ|2H.

For every symmetric Gaussian measure µ on B, there exists

a unique reproducing kernel space H.
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uniqueness of reproducing kernel space

Let E be another Banach space E ↪→ B continuously as

a Borel set. If µ is a symmetric Gaussian on B and E,

then the reproducing kernel space w.r.t. B and E are the

same.

� B given

� µ given

� H ↪→ B uniquely determined.

e.g., B := C([0, T ],Rd), µ : Wiener measure. Then H is so-

called Cameron–Martin space,

H := {f : [0, T ]→ R
d; abs. conti., f ′(t) ∈ L2}.
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Abstract Wiener Space
B: separable Banach space.

H: Hilbert space (H ↪→ B conti., densely embedded).

µ: Gaussian measure on B such that∫
B

exp
{√−1 〈w, φ〉

}
µ(dw) = exp

{
−1

2
|φ|2H

}
for every φ ∈ B∗ ⊂ H∗ = H.

The triplet (B,H, µ) is called an abstract Wiener space.

µ(· − h) is equivalent to µ iff. h ∈ H, and

dµ(· − h)
dµ

(w) = exp

{
−1

2
|h|2H + 〈h,w〉

}
.
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H-derivative

A function F : B → R is H-differentiable on w ∈ B if there

exists DF (w) ∈ H such that

d

dt
F (w+ th)

∣∣∣
t=0

= 〈DF (w), h〉H
is satisfied for every h ∈ H.

� F (w+ th) = F (w) + t 〈DF (w), h〉+ o(|t|).
� If F (w) = f(〈w, φ1〉 , 〈w, φ2〉 , . . . , 〈w, φn〉), φi ∈ B∗, then

DF (w) =
n∑
i=1

∂if(. . .)φi(x) ∈ H.
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Dirichlet form theory on B
Using H-derivative, we define a bilinear form

E (F,G) :=
1

2

∫
B
〈DF (w), DG(w)〉H µ(dw)

on an AWS (B,H, µ) with D(E ) = D
2
1(B). Then (E , D(E )) is

a regular Dirichlet form (closed symmetric Markovian form).

We can prove (S. Kusuoka, Dirichlet forms and diffusion pro-

cesses on Banach Space, 82) that there exists a diffusion

process on B which (weakly) solves to

dX(t) = −1

2
X(t) dt+ dB(t),

where B(t) is B-valued Brownian motion.

However, our goal is still far away. . .
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Gaussian measure on Hilbert space
B: separable Hilbert space.

Q : B → B, strictly positive symmetric nuclear operator,

KerQ = {0}
µ: Gaussian measure on B with covariance operator Q.

H := Q1/2(B), 〈f, g〉H :=
〈
Q−1/2f,Q−1/2g

〉
B
.

∫
B

exp
{√−1 〈w, φ〉B

}
µ(dw) = exp

{
−1

2
〈Qφ, φ〉B

}
.

µ(dw) =
1

Z
exp

{
−1

2

〈
Q−1w,w

〉
B

}
dw.

on B.
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“computations” based on Feynman measure
∫
B
〈DF (w), DG(w)〉H µ(dw)

=

∫
B
〈DF (w), DG(w)〉Z−1 exp

{
−1

2

〈
Q−1w,w

〉
B

}
dw

=

∫
B
〈DF (w), DG(w)〉Z−1 exp

{
−1

2
〈w,w〉H

}
dw

←→ dX(t) = dW (t)− 1
2X(t) dt.

Now, we shall take a concrete Hilbert space B := H−1(0,1),

H := L2(0,1), and Q := (−∆)−1.

Recall that we want to consider

µ(dw) =
1

Z
exp

{
1

2
〈∆w,w〉

}
dw,

on L2.
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SPDE on Feynman measure
Recall that (in finite dim)∫

H=B
〈DF (w), DG(w)〉H Z−1 exp

{
−1

2
〈(−∆)w,w〉H

}
dw

←→ dX(t) = 1
2∆X(t) dt+ dB(t).

=

∫
B
〈DF (w), DG(w)〉H Z−1 exp

{
−1

2
〈(−∆)(−∆)w,w〉B

}
dw

=

∫
B
〈DF (w), DG(w)〉H Z−1 exp

{
−1

2
〈(−∆)w,w〉H

}
dw

=

∫
B
〈DF (w), DG(w)〉H Z−1 exp

{
−1

2
|w|2

H1
0

}
dw

=

∫
H
〈∇F (w),∇G(w)〉H β(dw)
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pinned Wiener measure and Laplacian

A Gaussian process (pinned B.m.) X(t) ≡ Xa→b(t),

dX(t) = dB(t) +
b−X(t)

1− t dt, X(0) = a

has a covariance function ρ(s, t) = (s ∧ t) − st, which

verifies

((−∆)−1f)(x) =

∫ 1

0
ρ(x, y)f(y) dy.

A pinned Wiener measure β, extended to L2(0,1), the

law of X0→0 is a Gaussian measure on L2(0,1) with co-

variance operator (−∆)−1.
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white noise
Let us go to the strong formulation of SPDE.

The white noise on [0,∞) is a centered Gaussian random

variable W (t) with covariance

E[W (t)W (s)] = δt−s.

It is easy to see that W (t) = dB(t)/dt (Itô derivative, or

Schwartz sense).

The space-time white noise is a centered Gaussian field

on (x, t) with covariance E[W (x, t)W (y, s)] = δx−yδt−s.

� rigorous formulation is expected.

� prefer to fit to stochastic analysis.

33



simplest way

Let (S ,B(S )) be the Schwartz space and µ is a Gaussian

measure on (S ,B(S )) with reproducing kernel space L2.

each element w ∈ (S ,B(S ), µ) is called white noise.

� each stochastic quantity is a white noise functional.

� H. Holden, B. Oksendal, J. Uboe, T. Zhang, Stochastic

Partial Differential Equations, Birkhauser, 1996.

� Itô calculus?
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Easiest way—Brownian sheet approach
� T. Kitagawa, Analysis of variance applied to function

space, Mem. Fac. Sci. Kyushu Univ. 6, 41–53, 1951

Let E := [0,∞)2, m: Lebesgue measure on E.

A random set function W on B(E) is called a white noise

if

�W (A) ∼ N (0,m(A))

�A ∩ B = ∅ ⇒ W (A) and W (B) is independent and

W (A ∪B) = W (A) +W (B).

A process {B(x, t)}(x,t)∈E defined by B(x, t) := W ((0, x] ×
(0, t]) is called Brownian sheet.
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properties of Brownian sheet
� E[B(x, t)B(y, s)] = (x ∧ y)(t ∧ s).
� if x is fixed, {B(x, t)}t≥0 is a Brownian motion.

� M(t) := B(t, t) is a martingale, of (non stationary) inde-

pendent increments, and is not a Brownian motion.

define Ḃ(x, t) :=
∂2B(x, t)

∂x∂t
in the sense of Schwartz distri-

bution, namely, for φ ∈ C2
0(E),

Ḃ(φ) =

∫
E
B(x, t)

∂2φ(x, t)

∂x∂t
.

If we may “expect” the existence of the Itô integral,

Ḃ(φ)must be

∫∫
φ(x, t)W (dx, dt).
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Itô integral with respect to Brownian sheet
Take φ(x, t) = 1[0,x]×[0,t](x, t).

Ḃ(φ) =

∫ t

0

∫ x

0

∂2B(x, t)

∂x∂t
(y, s) dy ds

= B(x, t) =

∫∫
φ(x)W (dw, dt).

It is certainly true; The theory of the Itô integral w.r.t. Brow-

nian sheet can be constructed as a usual way:

� J. B. Walsh, An Introduction to Stochastic Partial Dif-

ferential Equations, LNM1180, 265–439, 1984.

We denote the space-time white noise by
∂2B(x, t)

∂x∂t
or B(dx, dt)

as a formal Itô derivative.
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cylindrical approach—easily handled

A stochastic process W (t) is called a cylindrical Brownian

motion on L2 or white noise process if W ≡ {W (t;ψ)} is

a family of R-valued stochastic process with a parameter

family ψ ∈ L2 such that

�∀ψ ∈ L2, W (t;ψ)/‖ψ‖L2 is a one-dimensional standard

B.m.

�∀α, β ∈ R, ψ, ϕ ∈ L2,

W (t;αϕ+ βψ) = αW (t;ϕ) + β(t;ψ)

almost surely (for α, β, ϕ, ψ).

� This time, the theory of the Itô integral is rather easy.

� spece-time white noise is a formal Itô derivative of W (t).

38



Itô integral for cylindrical B.m.

∫ t

0
〈f(s), dW (s)〉L2 :=

∞∑
k=1

∫ t

0
〈f(s), ψk〉 dW (s;ψk).

For Φ(t) : L2→ H, Hilbert–Schmidt s.t.

E

[∫ T

0
‖Φ(t)‖2HSdt

]
<∞,

We define the stochastic integral
∫ t
0 Φ(s)dW (s) by〈∫ t

0
Φ(s) dW (s), φ

〉
H

=

∫ t

0
〈Φ(s)∗φ, dW (s)〉L2 ds, ∀φ ∈ H.

� W (s) is not even an L2-valued process, the Itô integral is

actually H-valued process.

� see T. Funaki, Stochastic Differential Equations, Iwanami,

2005.
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distribution valued process (really easiest)

Let (H−1, L2, µ) be an AWS.

A Wiener space associated to this abstract Wiener space

is called white noise process.

� Actually it is the same with cylindrical approach.

� see also, G. Da Prato and J. Zabczyk, Stochastic Equa-

tions in Infinite Dimensions, Cambridge, 1992.
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stochastic partial differential equations
We consider stochastic partial differential equations

dX(t) =
1

2
∆X(t)dt− F (t;X(t))dt+ σ(X(t)) dW (t),

with W (t) is a white noise process (dW (t)/dt is a space-time

white noise), and Dirichlet boundary conditions on (0,1).

Sometimes this equation is written in the following form:

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
− f(x, t;u(x, t)) + σ(x, t;u(x, t))Ẇ (dx, dt).

Now we define its solution.
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weak form solution
We call a function X(t) ∈ L2(0,1) is a solution to the SPDE

if

〈X(t), φ〉 − 〈X(0), φ〉 =∫ t

0

〈
X(s), φ′′

〉
ds−

∫ t

0
〈F (X(s)), φ〉 ds+

∫ t

0
〈σ(X(s))φ, dW (s)〉

is satisfied for every φ ∈ C2
0(0,1).

� Under Lipschitz conditions on the coefficients, we can

prove the existence and uniqueness result.

� X(t) actually stayes in C([0,1]) and X(t) is C([0,1])-

valued diffusion.

� The regularity is that X(t)(x) is (1/2− ε)-Hölder in x and

(1/4− ε)-Hölder in t.

� In higher space dimension, the solution does not stay in

any function space.

42



mild solutions
Let et∆ be a semigroup. Then X(t) is a solution to the

SPDE if it satisfies

X(t) = et∆X(0) +

∫ t

0
et∆f(X(s)) ds+

∫ t

0
et∆σ(X(s))dW (s).

� a weak form solution is also a mild solution.

� a mild form solution is also a weak form solution.

43



reversible measures
Let us consider an SPDE with an additive space-time white

noise:

dX(t) =
1

2
(∆X(t)− V ′(·, X(t))) dt+ dW (t).

Then the reversible measure µ for X(t) is given by

µ(dw) =
1

Z
exp

{
−

∫ 1

0
V (x,w(x)) dx

}
β(dw),

β is a Gaussian measure on C([0,1]) induced by a pinned

Brownian bridge 0 to 0.
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corresponding Dirichlet form
Define a bilinear form

E (F,G) :=
1

2

∫
L2
〈∇F (w),∇G(w)〉L2 µ(dw)

for F,G ∈ FC∞b , where ∇ denotes the Fréchet derivative

on L2. Then the closure is a Dirichlet form corresponding

to the SPDE (T. Funaki, The reversible measures of multi-

dimensional Ginzburg–Landau type continuum model, Osaka

J., 1991).

The Poincaré inequality and log-Sobolev inequality hold.
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