Scaling limit of successive approximations for $w^{\prime}=-w^{2}$, from analysis on single layer solutions to a non-linear non-local recursion

2005.07, Sendai
Tetsuya HATTORI (Tohoku U)
Hiroyuki OCHIAI (Nagoya U)

0. Motivation - Rod bisection.

Consider a non-linear non-local recursion
$f_{n+1}(y)=\frac{1}{y} \int_{0}^{y} f_{n}\left(y^{\prime}\right) f_{n}\left(y-y^{\prime}\right) d y^{\prime}, y>0, \quad n=0,1,2, \cdots$
Initial function: $f_{0}(y)=1,0 \leqq y<1,=0, y \geqq 1$
'Propagating single layer (Tsunami) solutions'

- Random sequential bisections of a rod:

Start from a rod of length 1.
Break into 2 pieces randomly with uniform distribution.
Then break the resulting pieces independently.
Contiue the procedure recursively.
X_{n} : length of the longest at nth stage $\left(X_{0}=1\right)$
Then $f_{n}(y)=\mathrm{P}\left[1 / X_{n}>y\right](\mathrm{M}$. Sibuya and Y. Itoh, 1987).

- Further related to binary search trees in data analysis.
$\circ 0 \leqq f_{n}(y) \leqq 1$, decreasing in y and increasing in n
\rightarrow (discrete time) 'Tsunami' solutions

$$
\begin{aligned}
& f_{n+1}(y)=\frac{1}{y} \int_{0}^{y} f_{n}\left(y^{\prime}\right) f_{n}\left(y-y^{\prime}\right) d y^{\prime} \\
& f_{0}(y)=1,0 \leqq y<1,=0, y \geqq 1
\end{aligned}
$$

Problem:

(Exponential) speed of propagation (wavefront)? (known)
Existence of scaling limit $\lim f_{n}\left(q_{n} y\right)$? (unknown)
Shape of scaling limit? (Solved - This work)

1. Scaling limit - Existence.

Existence of scaling limit for other initial functions? YES!

$$
\begin{aligned}
& f_{b,-}(y)=\max \left\{1-y^{b-1}, 0\right\} \\
& f_{0}=f_{b,-}, f_{n+1}(y)=\frac{1}{y} \int_{0}^{y} f_{n}\left(y^{\prime}\right) f_{n}\left(y-y^{\prime}\right) d y^{\prime}, n \in \mathbb{Z}_{+}
\end{aligned}
$$

Theorem 1. Let $b>2$ and $r=r(b):=(b / 2)^{1 /(b-1)}$.
(Then $f_{n}\left(r^{n} y\right) \uparrow$ in $n(\forall y>0)$ hence) $\exists \tilde{f}(y)=\lim _{n \rightarrow \infty} f_{n}\left(r^{n} y\right)$.
Following dichotomy, depending on b holds: Either
(i) $\tilde{f}(y)=1, y \geqq 0$, or, (ii) $Q:=\int_{0}^{\infty} \tilde{f}(y) d y<\infty$.

If in addition $b<(\log \rho)^{-1}$, then (ii) holds, where, $0<2 e \log \rho=\rho<e(\rho=1.26 \cdots)$.

- $r=r(b)$ is the correct scaling factor for $2<b<(\log \rho)^{-1}=$ $4.311 \cdots$. (Case (i) means that r^{n} is slower than the wavefront.)

Essence of Proof. - Monotonicity argument.

- $f_{n}\left(r^{n} y\right) \uparrow$ in n means r^{n} is no faster than the correct scaling sequence.
- A bound in other direction is possible for $2<b<(\log \rho)^{-1}$
$(1<r(b)<\rho)$ by $f_{b, b^{\prime},+}(y)=\min \left\{1-y^{b-1}+C y^{b^{\prime}-1}, 1\right\}$; $b<b^{\prime} \leqq \min \left\{(\log \rho)^{-1}, 2 b-1\right\}$ and large C.
$f_{0}=f_{b, b^{\prime},+}, f_{n+1}(y)=\frac{1}{y} \int_{0}^{y} f_{n}\left(y^{\prime}\right) f_{n}\left(y-y^{\prime}\right) d y^{\prime}$.
Lemma. $f_{n}\left(r(b)^{n} y\right) \downarrow$ in n.
This is insufficient to prove $Q<\infty$, but the non-linearlity of the recursion (with $r(<\rho)<2$) implies integrability.
- $b=(\log \rho)^{-1}: f_{0}=f_{b,-}$ gives monotone sequence but $f_{b, b^{\prime},+}$ does not exist!
- $b>(\log \rho)^{-1}$: Monotonicity arguments insufficient.
- Our next results suggest $r=\rho$ for $b \geqq(\log \rho)^{-1}$ (including ' $b=\infty$ ', the rod bisection case), possibly with 'corrections'.

2. A sufficient condition for existence.

To state a sufficient condition for existence of scaling limit, we will work with the Laplace transforms:
$w_{n}(x)=\int_{0}^{\infty} e^{-x y} f_{n}(y) d y$.
The recursion $f_{n+1}(y)=\frac{1}{y} \int_{0}^{y} f_{n}\left(y^{\prime}\right) f_{n}\left(y-y^{\prime}\right) d y^{\prime}$
corresponds to
$w_{n+1}(x)=\int_{x}^{\infty} w_{n}\left(x^{\prime}\right)^{2} d x^{\prime}$.

- Successive approximation (approximation by integration) of a differential equation $w^{\prime}(x)=-w(x)^{2}$
- $r>1$ (un-scaled $f_{n}(y) \uparrow 1$) corresponds to successive approximation to a solution $w(x)=x^{-1}$ $\Leftrightarrow w_{0}(x)=x^{-1}+o\left(x^{-2}\right), x \rightarrow \infty$.
- Starting from a bounded function w_{0}, the sequence of approximate functions $\left\{w_{n}\right\}$ should increase near $x=0$. Our problem is to find whether this 'blow-up' has a scaling limit, namely, to find whether w_{n} approach the exact solution in an asymptotically conformal way, $w_{n}(x) \asymp q_{n} \bar{w}\left(q_{n} x\right)$, for some (regular) function \bar{w} and a sequence of numbers $\left\{q_{n}\right\} \uparrow \infty$.

Interesting things happen because $w^{\prime}(x)=-w(x)^{2}$ has no singluarities while its solutions do (moving singularities). To be specific, we define the scaling limit of $\left\{w_{n}\right\}$ by $\bar{w}(x)=\lim _{n \rightarrow \infty} q_{n}^{-1} w_{n}\left(q_{n}^{-1} x\right)$, where $q_{n}=w_{n}(0)$.

- $\bar{w}(0)=1$ for this choice of $\left\{q_{n}\right\}$.

Our previous results on existence of scaling limits for $2<$ $b<(\log \rho)^{-1}$ are restated in terms of successive approximations, as follows. For $b>2$, consider
$w_{0}(x)=\frac{1}{x}\left(1-e^{-x}\right)-\frac{1}{x^{b}} \gamma(b, x), \gamma(b, x)=\int_{0}^{x} y^{b-1} e^{-y} d y$.
Note that $w_{0}(x)=x^{-1}+O\left(x^{-b}\right), x \rightarrow \infty$.

Theorem 2. Let $2<b<(\log \rho)^{-1}$, and
$w_{n+1}(x)=\int_{x}^{\infty} w_{n}\left(x^{\prime}\right)^{2} d x^{\prime}, n \in \mathbb{Z}_{+}$,
with $w_{0}(x)=\frac{1}{x}\left(1-e^{-x}\right)-\frac{1}{x^{b}} \gamma(b, x)$. Then the scaling
limit exists and satisfies $\bar{w}(x)=\sum_{k=0}^{\infty}(-1)^{k} \alpha_{k} x^{k}$ with
$\alpha_{0}=1, \alpha_{k}=\frac{1}{k r^{k+1}} \sum_{j=1}^{k} \alpha_{k-j} \alpha_{j-1}, k \in \mathbb{N}$, and
$r=\lim _{n \rightarrow \infty} q_{n+1} / q_{n}>1$ given by $r=r(b):=(b / 2)^{1 /(b-1)}$.
We thus have existence of scaling limits and precise form!

Outline of proof.

The correspondence $w_{n}(x)=\int_{0}^{\infty} e^{-x y} f_{n}(y) d y$ and Theorem 1, combined with the next Theorem 3, which gives a sufficient condition for a sequence of successive approximations $\left\{w_{n}\right\}$ to have a scaling limit, prove Theorem 2.
The integrability condition $Q=\int_{0}^{\infty} \tilde{f}(y) d y<\infty$ in Theorem 1 is crucial in proving that the scaling sequence $r(b)^{n}$ in Theorem 1 is asymptotically equivalent to the scaling sequence $q_{n}=w_{n}(0)=\int_{0}^{\infty} f_{n}(y) d y$ in Theorem 2.

- Sufficient condition for existence of scaling limits.
$\mathcal{C}:$ a set of entire functions $\bar{w}: \mathbb{C} \rightarrow \mathbb{C}$, with $\bar{w}(0)=1$ and $\bar{w}(z)=\sum_{k=0}^{\infty}(-1)^{k} a_{k} z^{k}, a_{k} \geqq 0, k \in \mathbb{Z}_{+}, \bar{w}(x)>0, x>0$, and $\bar{w}(x)=x^{-1}+o\left(x^{-2}\right), x \rightarrow \infty$.
Theorem 3. Let $\bar{w}_{0} \in \mathcal{C}$ and $\bar{w}_{n}, n \in \mathbb{Z}_{+}$, defined by $\bar{w}_{n+1}(x)=\frac{1}{r_{n}} \int_{x / r_{n}}^{\infty} \bar{w}_{n}\left(x^{\prime}\right)^{2} d x^{\prime}, r_{n}=\int_{0}^{\infty} \bar{w}_{n}\left(x^{\prime}\right)^{2} d x^{\prime}$. If
$\exists r=\lim _{n \rightarrow \infty} r_{n}>1$, then \bar{w}_{n} converges uniformly on $\forall K \subset \subset \mathbb{C}$ to $\bar{w}(z)=\sum_{k=0}^{\infty}(-1)^{k} \alpha_{k} z^{k}$, where $\left\{\alpha_{k}\right\}$ as in Theorem 2.

3. Random sequential bisection revisited

 Suggestions from numerical results.The sufficient condition for existence of scaling limits (Theorem 3) holds for any $r>1$, in particular, for the rod bisection case: $f_{0}(y)=\left\{\begin{array}{ll}1, & 0 \leqq y<1, \\ 0, & y \geqq 1,\end{array} \quad\right.$ or, in terms of Laplace transform: $w_{0}(x)=\frac{1}{x}\left(1-e^{-x}\right)=\int_{0}^{\infty} e^{-x y} f_{0}(y) d y$. $w_{n+1}(x)=\int_{x}^{\infty} w_{n}\left(x^{\prime}\right)^{2} d x^{\prime}, n \in \mathbb{Z}_{+}$.

Then $w_{n}(x)=\int_{0}^{\infty} e^{-x y} \mathrm{P}\left[1 / X_{n}>y\right] d y$;
X_{n} : length of the longest piece among 2^{n} pieces at nth stage of random sequential bisection of a rod, starting from $X_{0}=1$.
Theorem 4. If a limit $r=\lim _{n \rightarrow \infty} q_{n+1} / q_{n}>1$ exists, then
the scaling limit $\bar{w}(x)=\sum_{k=0}^{\infty}(-1)^{k} \alpha_{k} x^{k}$ exists with $r=\rho$
and $\alpha_{0}=1, \alpha_{k}=\frac{1}{k r^{k+1}} \sum_{j=1}^{k} \alpha_{k-j} \alpha_{j-1}, k \in \mathbb{N}$.

- Note. Theorem 4 in particular implies $1 /\left(q_{n} X_{n}\right)$ converges weakly to a distribution (scaling limit) whose generating function is $\lim _{n \rightarrow \infty} \mathrm{E}\left[e^{-z /\left(q_{n} X_{n}\right)}\right]=1-z \bar{w}(z)$.
- Proof of $r=\rho$. The assumed limit $r=\lim _{n \rightarrow \infty} q_{n+1} / q_{n}>1$ is equal to a weaker limit $\lim _{n \rightarrow \infty} q_{n}^{1 / n}$, which can be derived from $\lim _{n \rightarrow \infty} X_{n}^{-1 / n}=\rho$, a.s., a result of J. D. Biggins (1977) applied to the problem along the lines of L. Devrove (1986).

Implications of numerical results.

- Assumption $r=\lim _{n \rightarrow \infty} q_{n+1} / q_{n}>1$ in Theorem 4.

Numerical results for q_{n+1} / q_{n} vs n.

- The results suggest $\exists r=\lim _{n \rightarrow \infty} q_{n+1} / q_{n}>1$.

Numerical results for $Q_{n}=q_{n} / \rho^{n}$ vs n.

- The results suggest $Q=\lim _{n \rightarrow \infty} Q_{n}=\infty$. (The curve is a fit to the data: $Q_{n}=0.666 n^{0.407}$.) In particular, ρ^{n} isn't a correct scaling sequence; the choice $q_{n}=w_{n}(0)$ is essential.

Height of binary search trees.

Maximal length X_{n} of random sequential bisections of a rod is closely related to the height H_{N} of binary search trees with data size N (L. Devroye (1986)):
$\mathrm{P}\left[X_{n} \geqq(1+n) / N\right] \leqq \mathrm{P}\left[H_{N} \geqq n\right] \leqq \mathrm{P}\left[X_{n} \geqq 1 / N\right]$.
With some extra assumptions, we could conjecture (in connection with our results) 'sum rules':
$\lim _{n \rightarrow \infty} \frac{\sum_{N=1}^{\infty} N^{k} \mathrm{P}\left[H_{N} \leqq n\right]}{\left(\sum_{N=1}^{\infty} \mathrm{P}\left[H_{N} \leqq n\right]\right)^{k+1}}=\alpha_{k} k!$

