
Scaling limit of successive approximations

for w′ = −w2, from analysis on single layer

solutions to a non-linear non-local recursion

2005.07, Sendai

Tetsuya HATTORI (Tohoku U)

Hiroyuki OCHIAI (Nagoya U)



0. Motivation — Rod bisection.

Consider a non-linear non-local recursion

fn+1(y) =
1
y

∫ y

0

fn(y′)fn(y − y′) dy′, y > 0, n = 0, 1, 2, · · ·
Initial function: f0(y) = 1, 0 � y < 1, = 0, y � 1

‘Propagating single layer (Tsunami) solutions’

1 2 3 4 5

0.5

1



• Random sequential bisections of a rod:
Start from a rod of length 1.

Break into 2 pieces randomly with uniform distribution.

Then break the resulting pieces independently.

Contiue the procedure recursively.

Xn: length of the longest at nth stage (X0 = 1)

Then fn(y) = P[ 1/Xn > y ] (M. Sibuya and Y. Itoh, 1987).

• Further related to binary search trees in data analysis.

◦ 0 � fn(y) � 1, decreasing in y and increasing in n

→ (discrete time) ‘Tsunami’ solutions



fn+1(y) =
1

y

� y

0

fn(y′)fn(y − y′) dy′

f0(y) = 1, 0 � y < 1, = 0, y � 1

Problem:

(Exponential) speed of propagation (wavefront)? (known)

Existence of scaling limit lim fn(qny)? (unknown)

Shape of scaling limit? (Solved — This work)
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1. Scaling limit — Existence.

Existence of scaling limit for other initial functions? YES!

fb,−(y) = max{1 − yb−1, 0}
f0 = fb,−, fn+1(y) =

1
y

∫ y

0

fn(y′)fn(y − y′) dy′, n ∈ Z+
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Theorem 1. Let b > 2 and r = r(b) := (b/2)1/(b−1).

(Then fn(rny) ↑ in n (∀y > 0) hence) ∃f̃(y) = lim
n→∞ fn(rny).

Following dichotomy, depending on b holds: Either

(i) f̃(y) = 1, y � 0, or, (ii) Q :=
∫ ∞

0

f̃(y) dy < ∞.

If in addition b < (log ρ)−1, then (ii) holds,

where, 0 < 2e log ρ = ρ < e (ρ = 1.26 · · ·). �

• r = r(b) is the correct scaling factor for 2 < b < (log ρ)−1 =

4.311 · · ·. (Case (i) means that rn is slower than the wavefront.)



Essence of Proof. — Monotonicity argument.

• fn(rny) ↑ in n means rn is no faster than the correct

scaling sequence.

• A bound in other direction is possible for 2 < b < (log ρ)−1

(1 < r(b) < ρ) by fb,b′,+(y) = min{1 − yb−1 + Cyb′−1, 1};
b < b′ � min{(log ρ)−1, 2b − 1} and large C.

f0 = fb,b′,+, fn+1(y) =
1
y

∫ y

0

fn(y′)fn(y − y′) dy′.

Lemma. fn(r(b)ny) ↓ in n. �

This is insufficient to prove Q < ∞, but the non-linearlity

of the recursion (with r (< ρ) < 2) implies integrability.



• b = (log ρ)−1: f0 = fb,− gives monotone sequence but

fb,b′,+ does not exist!

• b > (log ρ)−1: Monotonicity arguments insufficient.

• Our next results suggest r = ρ for b � (log ρ)−1 (including

‘b = ∞’, the rod bisection case), possibly with ‘corrections’.
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2. A sufficient condition for existence.

To state a sufficient condition for existence of scaling limit,

we will work with the Laplace transforms:

wn(x) =
∫ ∞

0

e−xyfn(y) dy.

The recursion fn+1(y) =
1
y

∫ y

0

fn(y′)fn(y − y′) dy′

corresponds to

wn+1(x) =
∫ ∞

x

wn(x′)2 dx′.

• Successive approximation (approximation by integra-

tion) of a differential equation w′(x) = −w(x)2



• r > 1 (un-scaled fn(y) ↑ 1) corresponds to successive

approximation to a solution w(x) = x−1

⇔ w0(x) = x−1 + o(x−2), x → ∞.

• Starting from a bounded function w0 , the sequence of

approximate functions {wn} should increase near x = 0.

Our problem is to find whether this ‘blow-up’ has a scaling

limit, namely, to find whether wn approach the exact solu-

tion in an asymptotically conformal way, wn(x) 
 qnw̄(qnx),

for some (regular) function w̄ and a sequence of numbers

{qn} ↑ ∞.



Interesting things happen because w′(x) = −w(x)2 has no

singluarities while its solutions do (moving singularities).

To be specific, we define the scaling limit of {wn} by

w̄(x) = lim
n→∞ q−1

n wn(q−1
n x), where qn = wn(0).

• w̄(0) = 1 for this choice of {qn}.
Our previous results on existence of scaling limits for 2 <

b < (log ρ)−1 are restated in terms of successive approxima-

tions, as follows. For b > 2, consider

w0(x) =
1
x

(1 − e−x) − 1
xb

γ(b, x), γ(b, x) =
∫ x

0

yb−1e−ydy.

Note that w0(x) = x−1 + O(x−b), x → ∞.



Theorem 2. Let 2 < b < (log ρ)−1, and

wn+1(x) =
∫ ∞

x

wn(x′)2 dx′, n ∈ Z+,

with w0(x) =
1
x

(1 − e−x) − 1
xb

γ(b, x). Then the scaling

limit exists and satisfies w̄(x) =
∞∑

k=0

(−1)kαkxk with

α0 = 1, αk =
1

krk+1

k∑
j=1

αk−jαj−1, k ∈ N, and

r = lim
n→∞ qn+1/qn > 1 given by r = r(b) := (b/2)1/(b−1). �

We thus have existence of scaling limits and precise form!



Outline of proof.

The correspondence wn(x) =
∫ ∞

0

e−xyfn(y) dy and Theo-

rem 1, combined with the next Theorem 3, which gives a

sufficient condition for a sequence of successive approxima-

tions {wn} to have a scaling limit, prove Theorem 2.

The integrability condition Q =
∫ ∞

0

f̃(y)dy < ∞ in Theo-

rem 1 is crucial in proving that the scaling sequence r(b)n

in Theorem 1 is asymptotically equivalent to the scaling se-

quence qn = wn(0) =
∫ ∞

0

fn(y) dy in Theorem 2.



◦ Sufficient condition for existence of scaling limits.

C: a set of entire functions w̄ : C → C, with w̄(0) = 1 and

w̄(z) =
∞∑

k=0

(−1)kakzk, ak � 0, k ∈ Z+, w̄(x) > 0, x > 0,

and w̄(x) = x−1 + o(x−2), x → ∞.

Theorem 3. Let w̄0 ∈ C and w̄n, n ∈ Z+, defined by

w̄n+1(x) =
1
rn

∫ ∞

x/rn

w̄n(x′)2 dx′, rn =
∫ ∞

0

w̄n(x′)2 dx′. If

∃r = lim
n→∞ rn > 1, then w̄n converges uniformly on ∀K ⊂⊂ C

to w̄(z) =
∞∑

k=0

(−1)kαkzk, where {αk} as in Theorem 2. �



3. Random sequential bisection revisited —

Suggestions from numerical results.

The sufficient condition for existence of scaling limits (The-

orem 3) holds for any r > 1, in particular, for the rod bisec-

tion case: f0(y) =

{
1, 0 � y < 1,

0, y � 1 ,
or, in terms of Laplace

transform: w0(x) =
1
x

(1 − e−x) =
∫ ∞

0

e−xyf0(y) dy.

wn+1(x) =
∫ ∞

x

wn(x′)2 dx′, n ∈ Z+.



Then wn(x) =
∫ ∞

0

e−xyP[ 1/Xn > y ] dy;

Xn: length of the longest piece among 2n pieces at nth

stage of random sequential bisection of a rod, starting from

X0 = 1.

Theorem 4. If a limit r = lim
n→∞ qn+1/qn > 1 exists, then

the scaling limit w̄(x) =
∞∑

k=0

(−1)kαkxk exists with r = ρ

and α0 = 1, αk =
1

krk+1

k∑
j=1

αk−jαj−1, k ∈ N. �



◦ Note. Theorem 4 in particular implies 1/(qnXn) con-

verges weakly to a distribution (scaling limit) whose gener-

ating function is lim
n→∞E[ e−z/(qnXn) ] = 1 − zw̄(z).

◦ Proof of r = ρ. The assumed limit r = lim
n→∞ qn+1/qn > 1

is equal to a weaker limit lim
n→∞ q1/n

n , which can be derived

from lim
n→∞X−1/n

n = ρ, a.s., a result of J. D. Biggins (1977)

applied to the problem along the lines of L. Devroye (1986).



Implications of numerical results.

◦ Assumption r = lim
n→∞ qn+1/qn > 1 in Theorem 4.
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Numerical results for qn+1/qn vs n.

• The results suggest ∃r = lim
n→∞ qn+1/qn > 1.



◦ Integrability of Q =
∫ ∞

0

f̃(y)dy.
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Numerical results for Qn = qn/ρn vs n.

• The results suggest Q = lim
n→∞Qn = ∞. (The curve is a

fit to the data: Qn = 0.666 n0.407.) In particular, ρn isn’t a

correct scaling sequence; the choice qn = wn(0) is essential.



Height of binary search trees.

Maximal length Xn of random sequential bisections of a rod

is closely related to the height HN of binary search trees with

data size N (L. Devroye (1986)):

P[ Xn � (1 + n)/N ] � P[ HN � n ] � P[ Xn � 1/N ].

With some extra assumptions, we could conjecture (in con-

nection with our results) ‘sum rules’:

lim
n→∞

∑∞
N=1 NkP[ HN � n ]

(
∑∞

N=1 P[ HN � n ])k+1
= αkk!


