Scaling limit of successive approximations for $w' = -w^2$, from analysis on single layer solutions to a non-linear non-local recursion

2005.07, Sendai Tetsuya HATTORI (Tohoku U) Hiroyuki OCHIAI (Nagoya U)

0. Motivation — Rod bisection.

Consider a non-linear non-local recursion $f_{n+1}(y) = \frac{1}{y} \int_0^y f_n(y') f_n(y-y') \, dy', \, y > 0, \quad n = 0, 1, 2, \cdots$ Initial function: $f_0(y) = 1, \ 0 \leq y < 1, = 0, y \geq 1$

'Propagating single layer (Tsunami) solutions'

• <u>Random sequential bisections</u> of a rod:

Start from a rod of length 1.

Break into 2 pieces randomly with uniform distribution. Then break the resulting pieces independently.

Contine the procedure recursively.

 X_n : length of the longest at *n*th stage $(X_0 = 1)$

Then $f_n(y) = \mathbb{P}[1/X_n > y]$ (M. Sibuya and Y. Itoh, 1987).

- Further related to <u>binary search trees</u> in data analysis. • $0 \leq f_n(y) \leq 1$, decreasing in y and increasing in n
- \rightarrow (discrete time) 'Tsunami' solutions

$$f_{n+1}(y) = \frac{1}{y} \int_0^y f_n(y') f_n(y-y') \, dy'$$

$$f_0(y) = 1, \ 0 \le y < 1, = 0, y \ge 1$$

Problem:

(Exponential) <u>speed</u> of propagation (wavefront)? (**known**) <u>Existence of scaling limit</u> $\lim f_n(q_n y)$? (**unknown**)

<u>Shape</u> of scaling limit? (Solved — This work)

1. Scaling limit — Existence.

Existence of scaling limit for other initial functions? YES!

$$f_{b,-}(y) = \max\{1 - y^{b-1}, 0\}$$

$$f_0 = f_{b,-}, f_{n+1}(y) = \frac{1}{y} \int_0^y f_n(y') f_n(y - y') \, dy', n \in \mathbb{Z}_+$$

Theorem 1. Let
$$b > 2$$
 and $r = r(b) := (b/2)^{1/(b-1)}$.
(Then $f_n(r^n y) \uparrow$ in $n \ (\forall y > 0)$ hence) $\exists \tilde{f}(y) = \lim_{n \to \infty} f_n(r^n y)$.
Following dichotomy, depending on b holds: Either
(i) $\tilde{f}(y) = 1, y \ge 0$, or, (ii) $Q := \int_0^\infty \tilde{f}(y) \, dy < \infty$.
If in addition $b < (\log \rho)^{-1}$, then (ii) holds,
where, $0 < 2e \log \rho = \rho < e \ (\rho = 1.26 \cdots)$.

• r = r(b) is the correct scaling factor for $2 < b < (\log \rho)^{-1} = 4.311 \cdots$ (Case (i) means that r^n is slower than the wavefront.)

Essence of Proof. — Monotonicity argument.

• $f_n(r^n y) \uparrow$ in *n* means r^n is no faster than the correct scaling sequence.

• A bound in other direction is possible for $2 < b < (\log \rho)^{-1}$ $(1 < r(b) < \rho)$ by $f_{b,b',+}(y) = \min\{1 - y^{b-1} + Cy^{b'-1}, 1\};$ $b < b' \leq \min\{(\log \rho)^{-1}, 2b - 1\}$ and large C. $f_0 = f_{b,b',+}, f_{n+1}(y) = \frac{1}{y} \int_0^y f_n(y') f_n(y - y') dy'.$ Lemma. $f_n(r(b)^n y) \downarrow$ in n. \diamondsuit

This is insufficient to prove $Q < \infty$, but the non-linearlity of the recursion (with $r \ (< \rho) < 2$) implies integrability.

- $b = (\log \rho)^{-1}$: $f_0 = f_{b,-}$ gives monotone sequence but $f_{b,b',+}$ does not exist!
- $b > (\log \rho)^{-1}$: Monotonicity arguments insufficient.
- Our next results suggest $r = \rho$ for $b \ge (\log \rho)^{-1}$ (including
- ' $b = \infty$ ', the rod bisection case), possibly with 'corrections'.

2. A sufficient condition for existence.

To state a sufficient condition for existence of scaling limit, we will work with the **Laplace transforms**:

$$w_n(x) = \int_0^\infty e^{-xy} f_n(y) \, dy.$$

The recursion $f_{n+1}(y) = \frac{1}{y} \int_0^y f_n(y') f_n(y-y') \, dy'$

corresponds to

$$w_{n+1}(x) = \int_{x}^{\infty} w_n(x')^2 \, dx'.$$

• Successive approximation (approximation by integra-

tion) of a differential equation $w'(x) = -w(x)^2$

• r > 1 (un-scaled $f_n(y) \uparrow 1$) corresponds to successive approximation to a solution $w(x) = x^{-1}$ $\Leftrightarrow w_0(x) = x^{-1} + o(x^{-2}), x \to \infty$.

• Starting from a bounded function w_0 , the sequence of approximate functions $\{w_n\}$ should increase near x = 0. Our problem is to find whether this 'blow-up' has a scaling limit, namely, to find whether w_n approach the exact solution in an asymptotically conformal way, $w_n(x) \approx q_n \bar{w}(q_n x)$, for some (regular) function \bar{w} and a sequence of numbers $\{q_n\} \uparrow \infty$. Interesting things happen because $w'(x) = -w(x)^2$ has no singluarities while its solutions do (moving singularities). To be specific, we define the <u>scaling limit</u> of $\{w_n\}$ by $\bar{w}(x) = \lim_{n \to \infty} q_n^{-1} w_n(q_n^{-1}x)$, where $q_n = w_n(0)$. • $\bar{w}(0) = 1$ for this choice of $\{q_n\}$. Our previous results on existence of scaling limits for 2 <

 $b < (\log \rho)^{-1}$ are restated in terms of successive approximations, as follows. For b > 2, consider

$$w_0(x) = \frac{1}{x} (1 - e^{-x}) - \frac{1}{x^b} \gamma(b, x), \ \gamma(b, x) = \int_0^x y^{b-1} e^{-y} dy.$$

Note that $w_0(x) = x^{-1} + O(x^{-b}), \ x \to \infty.$

Theorem 2. Let
$$2 < b < (\log \rho)^{-1}$$
, and
 $w_{n+1}(x) = \int_x^\infty w_n(x')^2 dx', n \in \mathbb{Z}_+,$
with $w_0(x) = \frac{1}{x} (1 - e^{-x}) - \frac{1}{x^b} \gamma(b, x).$ Then the scaling
limit exists and satisfies $\bar{w}(x) = \sum_{k=0}^\infty (-1)^k \alpha_k x^k$ with
 $\alpha_0 = 1, \ \alpha_k = \frac{1}{kr^{k+1}} \sum_{j=1}^k \alpha_{k-j} \alpha_{j-1}, \ k \in \mathbb{N}, \text{ and}$
 $r = \lim_{n \to \infty} q_{n+1}/q_n > 1$ given by $r = r(b) := (b/2)^{1/(b-1)}.$

We thus have existence of scaling limits and precise form!

Outline of proof.

The correspondence $w_n(x) = \int_0^\infty e^{-xy} f_n(y) dy$ and Theorem 1, combined with the <u>next Theorem 3</u>, which gives a sufficient condition for a sequence of successive approximations $\{w_n\}$ to have a scaling limit, prove Theorem 2. The integrability condition $Q = \int_{0}^{\infty} \tilde{f}(y) dy < \infty$ in Theorem 1 is crucial in proving that the scaling sequence $r(b)^n$ in Theorem 1 is asymptotically equivalent to the scaling sequence $q_n = w_n(0) = \int_0^\infty f_n(y) \, dy$ in Theorem 2.

\circ Sufficient condition for existence of scaling limits.

$$\mathcal{C}: \text{ a set of entire functions } \bar{w}: \mathbb{C} \to \mathbb{C}, \text{ with } \bar{w}(0) = 1 \text{ and} \\ \bar{w}(z) = \sum_{k=0}^{\infty} (-1)^k a_k z^k, a_k \geq 0, k \in \mathbb{Z}_+, \bar{w}(x) > 0, x > 0, \\ \text{and } \bar{w}(x) = x^{-1} + o(x^{-2}), x \to \infty. \\ \text{Theorem 3. Let } \bar{w}_0 \in \mathcal{C} \text{ and } \bar{w}_n, n \in \mathbb{Z}_+, \text{ defined by} \\ \bar{w}_{n+1}(x) = \frac{1}{r_n} \int_{x/r_n}^{\infty} \bar{w}_n(x')^2 dx', r_n = \int_0^{\infty} \bar{w}_n(x')^2 dx'. \text{ If} \\ \exists r = \lim_{n \to \infty} r_n > 1, \text{ then } \bar{w}_n \text{ converges uniformly on } \forall K \subset \mathbb{C} \\ \text{to } \bar{w}(z) = \sum_{k=0}^{\infty} (-1)^k \alpha_k z^k, \text{ where } \{\alpha_k\} \text{ as in Theorem 2. } \diamond \\ \end{cases}$$

3. Random sequential bisection revisited — Suggestions from numerical results.

The sufficient condition for existence of scaling limits (Theorem 3) holds for any r > 1, in particular, for the rod bisection case: $f_0(y) = \begin{cases} 1, & 0 \leq y < 1, \\ 0, & y \geq 1, \end{cases}$ or, in terms of Laplace transform: $w_0(x) = \frac{1}{x} (1 - e^{-x}) = \int_0^\infty e^{-xy} f_0(y) \, dy.$ $w_{n+1}(x) = \int_x^\infty w_n(x')^2 \, dx', \, n \in \mathbb{Z}_+.$ Then $w_n(x) = \int_0^\infty e^{-xy} \Pr[1/X_n > y] dy;$ X_n : length of the longest piece among 2^n pieces at *n*th stage of random sequential bisection of a rod, starting from $X_0 = 1.$

Theorem 4. If a limit $r = \lim_{n \to \infty} q_{n+1}/q_n > 1$ exists, then the scaling limit $\bar{w}(x) = \sum_{k=0}^{\infty} (-1)^k \alpha_k x^k$ exists with $r = \rho$ and $\alpha_0 = 1$, $\alpha_k = \frac{1}{kr^{k+1}} \sum_{j=1}^k \alpha_{k-j} \alpha_{j-1}$, $k \in \mathbb{N}$. • Note. Theorem 4 in particular implies $1/(q_n X_n)$ converges weakly to a distribution (<u>scaling limit</u>) whose generating function is $\lim_{n \to \infty} E[e^{-z/(q_n X_n)}] = 1 - z\bar{w}(z).$ • **Proof of** $r = \rho$. The assumed limit $r = \lim_{n \to \infty} q_{n+1}/q_n > 1$ is equal to a <u>weaker limit</u> $\lim_{n \to \infty} q_n^{1/n}$, which can be derived from $\lim_{n \to \infty} X_n^{-1/n} = \rho$, a.s., a result of <u>J. D. Biggins (1977)</u> applied to the problem along the lines of <u>L. Devroye (1986)</u>.

Implications of <u>numerical results.</u>

<u>Height of binary search trees.</u>

Maximal length X_n of random sequential bisections of a rod is closely related to the height H_N of binary search trees with data size N (L. Devroye (1986)):

$$\mathbf{P}[X_n \ge (1+n)/N] \le \mathbf{P}[H_N \ge n] \le \mathbf{P}[X_n \ge 1/N].$$

With some extra assumptions, we could conjecture (in con-

nection with our results) '<u>sum rules':</u>

$$\lim_{n \to \infty} \frac{\sum_{N=1}^{\infty} N^k \mathbf{P}[H_N \leq n]}{\left(\sum_{N=1}^{\infty} \mathbf{P}[H_N \leq n]\right)^{k+1}} = \alpha_k k!$$