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0. Motivation — Rod bisection.

Consider a non-linear non-local recursion

W

fnr1(y) = ;/ @ fly—y)dy', y >0, n=0,1,2,--
0

Initial function: fo(y) =1, 02y <1, =0,y =1

‘Propagating single layer (Tsunami) solutions’




e Random sequential bisections of a rod:
Start from a rod of length 1.
Break into 2 pieces randomly with uniform distribution.

Then break the resulting pieces independently.
Contiue the procedure recursively.
X, length of the longest at nth stage (Xg =1)
Then f,(y) =P[1/X,, >y | (M. Sibuya and Y. Itoh, 1987).
e Further related to binary search trees in data analysis.
o 0= fn(y) £ 1, decreasing in y and increasing in n

— (discrete time) ‘Tsunami’ solutions



fri(y) = 5 /Oy fn(y ) fuly —y') dy

foly) =1, 05y <1, =0,y 21

Problem:

(Exponential) speed of propagation (wavefront)? (known)
Existence of scaling limit lim f,(¢,y)? (unknown)

Shape of scaling limit? (Solved — This work)




1. Scaling limit — Existence.

Existence of scaling limit for other initial functions? YES!

fo,—(y) = maX{l -y, 0}

Jo = fb—afn—i—l /fn Vfnly—y)dy', neZ,




Theorem 1. Let b > 2 and r = r(b) := (b/2)Y/ (1),
(Then f,(r™y) T inn (Vy > 0) hence) 3f(y) = lim f,(r"y).
Following dichotomy, depending on O(I)) holds: E?&l(;or

) F) =Ly 0.0n (i) Q= [ fly)dy < oo

If in addition b < (log p) ™', then (?i) holds,

where, 0 < 2elogp=p <e (p=1.26---). &

e r = r(b) is the correct scaling factor for 2 < b < (log p)_l =

4.311---. (Case (i) means that r™ is slower than the wavefront.)




Essence of Proof. — Monotonicity argument.
e f,(r"y) T in n means r” is no faster than the correct

scaling sequence.

—1

e A bound in other direction is possible for[2 < b < (log p)

(1 <r(b) < p) by forr 1 (y) = min{l — "' + Cy* 7', 1};
b <V < min{(logp)~t, 20— 1} and large C.

fo=Fow s Fusr@) = = [ Fuls)fuly — o)

~»

UJU

Lemma. f,(r(b)" ) l in n. &

This is insufficient to prove () < oo, but the non-linearlity

of the recursion (with r (< p) < 2) implies integrability.




e b = (logp)~': fo = fp_ gives monotone sequence but
Jv.pr + does not exist!

e b > (log p)~!: Monotonicity arguments insufficient.

e Our next results suggest r = p for b = (log p)~ ! (including

‘D = 00, the rod bisection case), possibly with ‘corrections’.
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2. A sufficient condition for existence.
To state a sufficient condition for existence of scaling limit,

we will work with the Laplace transforms:

wn(e) = [ e () dif.

Yy
The recursion f,41(y) = " /O fa(') fr(y — ') dy’

corresponds to

wn+1(x):/ wy, (2')* dx.

e Successive approximation (approximation by integra-

tion) of a differential equation w'(x) = —w(x)?



e r > 1 (un-scaled f,(y) T 1) corresponds to successive

approximation to a solution w(z) = 2™+

Slwe(z) =27 +o(z7?), 2 — oq.

e Starting from a bounded function wg, the sequence of
approximate functions {w,} should increase near x = 0.
Our problem is to find whether this ‘blow-up’ has a scaling
limit, namely, to find whether w,, approach the exact solu-
tion in an asymptotically conformal way, w,(z) < ¢, w(g,x),

for some (regular) function w and a sequence of numbers

{an} T oco.



Interesting things happen because w’(x) = —w(x)? has no
singluarities while its solutions do (moving singularities).

To be specific, we define the scaling limit of {w,} by

w(x) = lim qglwn(qglx)a where ¢, = wy,(0)|

e w(0) =1 for this choice of {q,}.
Our previous results on existence of scaling limits for 2 <
b < (log p)~! are restated in terms of successive approxima-

tions, as follows. For b > 2, consider

1 . 1 Y4
wo(e) = (1= e7*) = 5 (ba), 9(bo) = |y le vy

Note that wg(z) = 27! + O(z7?), z — oo.



Theorem 2. Let 2 < b < (logp) ™"

Whpa1(x) = / wy, (') de’, n € Z,

, and

1 1
with wo(z) = = (1 —e ) — — y(b,x). Then the scaling
x x
limit exists and satisfies w(z) = Z(—l)kozk:r;k with
k=0
ag =1, ap = ]WkJrlz&k’ joi—1, k€ N, and
7=1

r= lim ¢u41/qn > 1 given by r = r(b) := (b/2)1/O-1 &

We thus have existence of scaling limits and precise form!




Outline of proof.

The correspondence wy,(zx) = / e Y fn(y) dy and Theo-
0

rem 1, combined with the next Theorem 3. which gives a

sufficient condition for a sequence of successive approxima-

tions {w, } to have a scaling limit, prove Theorem 2.

The integrability condition ) = / f (y)dy < oo in Theo-
0
rem 1 is crucial in proving that the scaling sequence r(b)"

in Theorem 1 is asymptotically equivalent to the scaling se-

quence ¢, = wy(0) = / fn(y) dy in Theorem 2.
0




o Sufficient condition for existence of scaling limits.

C: a set of entire functions w : C — C, with w(0) = 1 and

w(z) = > (-1)*fapz”", ax 2 0, k € Zy, w(z) > 0, 2 > 0,
k=0
and w(x) =2~ +o(z7?), v — oo.

Theorem 3. Let wg € C and w,, n € Z,, defined by
1 o o

Wnt1(x) = —/ wy, (2 da’, r, = / Wy (2 dx’. If
n Jx/ry 0

Jr = lim r, > 1, then w,, converges uniformly on VK CcC C

n—oo
oo

to w(z) = Z(—l)kakzk, where {aj} as in Theorem 2. <
k=0




3. Random sequential bisection revisited —

Suggestions from numerical results.

The sufficient condition for existence of scaling limits (The-

orem 3) holds for any r > 1, in particular, for the rod bisec-
I, 0Sy<1,

tion case: fo(y) = { =Y

0, y=1,

1 oo
transform: wq(x) = . (1—e77) = / e Y fo(y) dy.
0

Wna1(T) = / wy, (') de’, n € Z,..

or, in terms of Laplace



Then w,(x) = / e P 1/X, >y |dy;
0
X,: length of the longest piece among 2™ pieces at nth

stage of random sequential bisection of a rod, starting from
Xo=1.

Theorem 4. If a limit » = lim ¢,11/q, > 1 exists, then
n—o

oo

the scaling limit w(z) = Z(—l)kakxk exists with r = p
k=0
|k
and ag =1, ap = o Zak_jaj_l, k € N. &

j=1




o Note. Theorem 4 in particular implies 1/(q,X,) con-

verges weakly to a distribution (scaling limit) whose gener-

ating function is |lim E[ e */(@Xn) | =1 — 2(2)|

o Proof of r = p. The assumed limit r = lim ¢,11/q, > 1
n—maoo

is equal to a weaker limit lim qi/ " which can be derived
from lim X /™ = p, a.s., a result of J. D. Biggins (1977)

n—00

applied to the problem along the lines of L. Devroye (1986).



Implications of numerical results.

o Assumption r = lim ¢,.1/¢, > 1 in Theorem 4.
n—00
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Numerical results for ¢,+1/q, vs n.

e 'The results suggest 3r = lim ¢,11/qn > 1.




o/ Integrability of () = / f(y)dy.
0

Numerical results for Q, = ¢, /p" vs n.
e 'The results suggest Q = lim @,, = od. (The curve is a
fit to the data: |@Q, = 0.666 n°4Y7.) In particular, p™ isn’t a

correct scaling sequence; the choice ¢, = w,(0) is essential.




Height of binary search trees.

Maximal length X,, of random sequential bisections of a rod
is closely related to the height Hn of binary search trees with
data size N (L. Devroye (1986)):

P[X, = (1+n)/N]<P[Hy2n]<P[X,21/N].
With some extra assumptions, we could conjecture (in con-

nection with our results) ‘sum rules’:
im 55
n—oo (3 y—y P[ Hy S n ])f+!

— Ozkk'




