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Abstract

We consider the stochastic ranking process with the jump times of the particles
determined by Poisson random measures. We prove that the joint empirical dis-
tribution of scaled position and intensity measure converges almost surely in the
infinite particle limit. We give an explicit formula for the limit distribution and
show that the limit distribution function is a unique global classical solution to
an initial value problem for a system of a first order non-linear partial differential
equations with time dependent coefficients.

1 Introduction.

Let M(R+) be the space of Radon measures ρ on the Borel σ-algebra B(R+) of non-

negative reals R+. Let N be a positive integer, and let ν
(N)
i , i = 1, 2, . . . , N , be indepen-

dent Poisson random measures (Poisson point processes) on R+ , defined on a probability

space (P,F , Ω). For each i, denote the intensity measure of ν
(N)
i by ρ

(N)
i ;

E[ ν
(N)
i (A) ] = ρ

(N)
i (A), A ∈ B(R+).(1)
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Throughout this paper, we assume ρ
(N)
i ∈ M(R+) and that ρ

(N)
i is continuous (i.e.,

ρ
(N)
i ({t}) = 0, t � 0) for all N and i.

Let x
(N)
1 , x

(N)
2 , . . . , x

(N)
N be a permutation of 1, 2, . . . , N , and define a process

X(N) = (X
(N)
1 , . . . , X

(N)
N )

by

X
(N)
i (t) = x

(N)
i +

N∑
k=1

∫ t

0
1X

(N)
k (s−0)>X

(N)
i (s−0)

ν
(N)
k (ds) +

∫ t

0

(1 − X
(N)
i (s − 0)) ν

(N)
i (ds),

i = 1, 2, . . . , N, t � 0 ,

(2)

where, 1A is the indicator function of event A.

Denote the unit measure concentrated on c by δc . With probability 1 we can write

ν
(N)
i =

∞∑
j=1

δ
τ
(N)
i,j

, i = 1, 2, . . . , N,(3)

where, with probability 1, τ
(N)
i,j ’s are random variables satisfying 0 < τ

(N)
i,1 < τ

(N)
i,2 < · · · ,

i = 1, 2, . . . , N , and τ
(N)
i,j �= τ

(N)
i′,j′ if (i, j) �= (i′, j′). In the following, we work on the event

that these inequalities hold.

The right hand side of (2) is a simple function in t. At t = τi,j we see

X
(N)
i (τi,j) − X

(N)
i (τi,j−) = 1 − X

(N)
i (τi,j−),

which implies

X
(N)
i (τi,j) = 1.(4)

With similar consideration, we see that the process X(N) is uniquely determined by (2):

Explicitly, we have, for i = 1, . . . , N ,

X
(N)
i (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
(N)
i +

∑
i′; x

(N)

i′ >x
(N)
i

1τ
(N)

i′,1 �t
0 � t < τ

(N)
i,1 ,

1 +

N∑
i′=1

1∃j′∈�; τ
(N)
i,j <τ

(N)

i′,j′�t
τ

(N)
i,j � t < τ

(N)
i,j+1, j = 1, 2, 3, . . . .

(5)

In the case of the (homogeneous) Poisson process (i.e., the case ρ
(N)
i ((0, t]) = w

(N)
i t,

t � 0, for positive constants w
(N)
i ), a discrete time version of the process (5) has been

known for a long time [25, 22, 16, 6, 21, 19] and is called move-to-front (MTF) rules.

The process has, in particular, been extensively studied as a model of least-recently-used
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(LRU) caching in the field of information theory [23, 8, 4, 7, 5, 24, 9, 11, 10, 17, 18],

and also is noted as a time-reversed process of top-to-random shuffling. With a great

advance in the internet technologies, a new application of the process appeared [13, 15].

The ranking numbers such as those found in the web pages of online bookstores are found

to follow the predictions of the model.

In [12], the case where ν
(N)
i ’s are (homogeneous) Poisson processes with ρ

(N)
i ((0, t]) =

w
(N)
i t is considered, and the joint empirical distribution of jump rate w

(N)
i and normalized

position

Y
(N)
i (t) =

1

N
(X

(N)
i (t) − 1),(6)

given by µ
(N)
t =

1

N

N∑
i=1

δ
(w

(N)
i ,Y

(N)
i (t))

, is studied. (We will abuse notation slightly and

denote a unit measure on any space by δc.) It is proved in [12] that a scaling limit

µt = lim
N→∞

µ
(N)
t(7)

exists (under reasonable assumptions), and an explicit formula for µt, which is a deter-

ministic distribution on R+ × [0, 1), is given. In [13], it is proved that, if the scaling limit

of the jump rate distribution is a discrete distribution, the limit µt is the unique time

global solution to an initial value problem for a system of first order non-linear partial

differential equations (inviscid Burgers equations with a term representing evaporation).

The structure of the explicit formula for µt is naturally explained by a standard method

of characteristic curves for the solution to the partial differential equations.

In the present paper, we will generalize the main results of [12, 13] to the case where

ν
(N)
i ’s are Poisson random measures. We shall call the process X(N) defined by (2), or

equivalently by (5), a stochastic ranking processes after [12, 13, 14].

Put

X
(N)
C (t) =

N∑
i=1

1τ
(N)
i,1 �t

, t � 0.(8)

X
(N)
C (t) is a random variable which denotes the position of the boundary between the

top side x � X
(N)
C (t) and the tail side x > X

(N)
C (t), where each particle in the top side

(i.e., i which satisfies X
(N)
i (t) � X

(N)
C (t)) has experienced jump to the top by time t (i.e.,

τ
(N)
i,1 � t), and the particles in the tail side are those particles which have not jumped to

the top by time t.

Proposition 1.1. Let t � 0, and assume that a sequence of distributions {λ(N)
t ; N ∈

N} on R+ defined by

λ
(N)
t =

1

N

N∑
i=1

δ
ρ
(N)
i ((0,t])

(9)
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converges weakly as N → ∞ to a probability distribution λt . Then the scaled position of

the boundary

Y
(N)
C (t) =

1

N
X

(N)
C (t) =

1

N

N∑
i=1

1τ
(N)
i,1 �t

(10)

converges almost surely as N → ∞ to

yC(t) = 1 −
∫ ∞

0

e−sλt(ds).(11)

�

Proof. The definition (10) implies that Y
(N)
C (t)−E[ Y

(N)
C (t) ] is an arithmetic mean

of independent variables

Z
(N)
i = 1τ

(N)
i,1 �t

−P[ τ
(N)
i,1 � t ], i = 1, 2, . . . , N,

with bounded 4th order moment. (In fact, |Z(N)
i | � 1, for all N and i.) Hence,

E[

∞∑
N=1

(Y
(N)
C (t) − E[ Y

(N)
C (t) ])4 ] =

∞∑
N=1

E[ (Y
(N)
C (t) − E[ Y

(N)
C (t) ])4 ] < ∞,

which implies

Y
(N)
C (t) − E[ Y

(N)
C (t) ] → 0, a.e., as N → ∞.

On the other hand, definition of Poisson random measure implies

E[ Y
(N)
C (t) ] =

1

N

N∑
i=1

P[ τ
(N)
i,1 � t ] =

1

N

N∑
i=1

(1 − e−ρ
(N)
i ((0,t])) = 1 −

∫ ∞

0

e−sλ
(N)
t (ds),

which converges to (11) by assumption.

Since by Proposition 1.1 we have almost sure convergence at each time t, we have

almost sure convergence for all rational number times simultaneously. By definition,

yC(t) and Y
(N)
C (ω)(t), ω ∈ Ω, are non-decreasing in t. Hence, if yC(t) is continuous, we

have almost sure convergence as a function in t.

Corollary 1.2. In addition to the assumptions in Proposition 1.1, assume that λt

is continuous in t with respect to the topology of weak convergence. Then for almost all

sample ω ∈ Ω, Y
(N)
C (ω) : R+ → [0, 1) defined by (10) converges pointwise in t as N → ∞

to a deterministic function yC : R+ → [0, 1) defined by (11). �
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Proposition 1.1 is a generalization to inhomogeneous case of [12, Proposition 2] for the

(homogeneous) Poisson process. The correspondence with λt in Proposition 1.1 and λ in

[12] is given by λt((0, c t]) = λ((0, c]). (9) implies that λt is the asymptotic distribution of

the expectation of number of jumps to rank 1 for each particle in the time interval (0, t].

Consider a joint empirical distribution µ(N) of intensity measure ρ
(N)
i and scaled posi-

tion Y
(N)
i of the stochastic ranking process:

µ
(N)
t =

1

N

N∑
i=1

δ
(ρ

(N)
i ,Y

(N)
i (t))

, t � 0.(12)

µ
(N)
t , N ∈ N, are random variables whose samples are distributions on the product space

M(R+) × [0, 1) of space of Radon measures M(R+) and an interval [0, 1) ⊂ R+.

We consider the standard vague topology on M(R+), that is, a sequence {ρn} ⊂
M(R+) converges to ρ ∈ M(R+) if and only if

lim
n→∞

∫
�+

f(s) ρn(ds) =

∫
�+

f(s) ρ(ds),(13)

for all continuous function f with compact support. Since R+ is a Polish space, i.e.,

complete and separable metric space, so is M(R+) [2, Theorem 31.5], and consequently,

M(R+) × [0, 1) is also a Polish space [2, Example 26.2].

Assume that a sequence of initial configurations

µ
(N)
0 =

1

N

N∑
i=1

δ
(ρ

(N)
i ,(x

(N)
i −1)/N)

, N = 1, 2, . . . ,

converges weakly as N → ∞ to a probability distribution µ0 on M(R+) × [0, 1). Then,

in particular,

Λ(N)(dρ) := µ
(N)
0 (dρ × [0, 1)) =

1

N

N∑
i=1

δ
ρ
(N)
i

(dρ) → Λ(dρ) := µ0(dρ × [0, 1)),

weakly, as N → ∞.

(14)

Note also that λ
(N)
t in (9) has an expression

λ
(N)
t =

∫
M(�+)

δρ((0,t])Λ
(N)(dρ).(15)

We shall generalize (15) and define, for 0 � s � t,

λ
(N)
s,t =

∫
M(�+)

δρ((s,t])Λ
(N)(dρ).(16)
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Theorem 1.3. Assume that µ
(N)
0 → µ0 weakly as N → ∞ for a probability distribu-

tion µ0 on M(R+) × [0, 1). Assume that for each (s, t) satisfying t � s � 0,

λ
(N)
s,t → λs,t :=

∫
M(�+)

δρ((s,t])Λ(dρ), weakly as N → ∞,(17)

where Λ is as in (14). Then for any t > 0, and for almost all sample ω ∈ Ω, the distribu-

tion µ
(N)
t (ω) converges weakly to a non-random probability distribution µt on M(R+) ×

[0, 1).

µt has a following expression in terms of U(dρ, y, t) := µt(dρ × [y, 1)).

U(dρ, y, t) := µt(dρ × [y, 1)) =

{
e−ρ((t−t0(y,t),t]) Λ(dρ) 0 � y � yC(t),

e−ρ((0,t]) U(dρ, ŷ(y, t), 0) yC(t) � y < 1.
(18)

Here, t0(y, t) is the inverse function with respect to t0 of

yA(t0, t) = 1 −
∫
M(�+)

e−ρ((t−t0 ,t]) Λ(dρ), 0 � t0 � t,(19)

namely,

t0(y, t) = inf{s ∈ [0, t] ; yA(s, t) � y},(20)

and ŷ(y, t) is the inverse function with respect to y of

yB(y, t) = 1 −
∫
M(�+)

e−ρ((0,t]) µ0(dρ × [y, 1)), t � 0, 0 � y < 1,(21)

namely,

ŷ(y, t) = inf{x ∈ [0, 1) ; yB(x, t) � y}.(22)

�

Note that yC(t) = yA(t, t) = yB(0, t). Note also that, as will be evident from the proof

of Theorem 1.3 in Section 2 for 0 � y � yC(t), the assumption µ
(N)
0 → µ0 can be replaced

by a weaker assumption Λ
(N)
0 → Λ for 0 � y � yC(t).

In contrast to Proposition 1.1, we do not have a result analogous to Corollary 1.2 for

Theorem 1.3, because we can expect no monotonicity for µ
(N)
t . If we impose additional

conditions, we may go further and prove almost sure convergence as sequences of processes

on a finite time interval [0, T ], both for Y
(N)
C → yC and µ(N) → µ. See Section 4 for

statement (Theorem 4.1) and proof.

The structure of the explicit limit formula (18), in particular, the appearance of the

inverse functions t0 of yA and ŷ of yB , can mathematically be understood through a
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system of partial differential equations, which is a generalization of that in [13]. To avoid

notational complication, consider the case that the limit distribution Λ is supported on a

discrete set: Λ =
∑

α rαδρα . Then (18) implies, for Uα(y, t) := µt({ρα} × [y, 1)),

Uα(y, t) =

{
rα e−ρα((t−t0(y,t),t]) 0 � y � yC(t),

Uα(ŷ(y, t), 0) e−ρ((0,t]) yC(t) � y < 1,
(23)

where t0 and ŷ are inverse functions, respectively, of

yA(t0, t) = 1 −
∑

α

rαe−ρα((t−t0 ,t]),(24)

and

yB(y, t) = 1 −
∑

α

Uα(y, 0)e−ρα((0,t]),(25)

defined by (20) and (22).

Theorem 1.4. Let k be a positive integer, and for each α = 1, 2, . . . , k, let rα be a

positive constant, wα : R+ → R+ a measurable function satisfying wα(t) > 0, t � 0, and

uα : [0, 1) → R+ a non-negative smooth strictly decreasing function, satisfying

k∑
β=1

rβ = 1,
k∑

β=1

rβwβ(t) < ∞, t � 0, and
k∑

β=1

uβ(y) = 1 − y, 0 � y < 1.(26)

Then an initial value problem for a system of partial differential equations

∂ Uα

∂t
(y, t) +

k∑
β=1

wβ(t) Uβ(y, t)
∂ Uα

∂y
(y, t) = −wα(t)Uα(y, t),

(y, t) ∈ [0, 1) × R+, α = 1, 2, . . . , k,

(27)

with a boundary condition

Uα(0, t) = rα, t � 0, α = 1, 2, . . . , k,(28)

and initial data

Uα(·, 0) = uα, α = 1, 2, . . . , k,(29)

has a unique time global classical solution, whose formula is given by (23) with

ρα((s, t]) =

∫ t

s

wα(u) du and Uα(y, 0) = uα(y).(30)

�
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As in [13, §2], (27) is solved by a method of characteristic curves, and yA, yB, and yC

turn out to be the characteristic curves for (27), which mathematically explains how the

inverse functions of these functions appear in the solutions.

For the homogeneous case (ρ
(N)
i ((0, t]) = w

(N)
i t), Theorem 1.3 reduces to [12, Theorem

5] (with slightly weaker assumption on µ0, Λ, and λt, and with stronger convergence in

(Ω,F , P), thanks to technical refinement in the proof), and Theorem 1.4 reduces to [13,

Theorem 1]. Motivation for extending the previous results to the present case arises both

from mathematical and application point of view.

Mathematical: The model is a natural extension of [12], with (homogeneous) Poisson

processes in the formulation of [12] generalized to (inhomogeneous) Poisson ran-

dom measures in (2) or (5). Also, as seen from Theorem 1.4, the system of PDE

corresponding to the limit distribution is a natural extension of that considered in

[13], with constant coefficients wα in [13] generalized to time dependent coefficients

wα(t) in (27). On the other hand, the space on which µt is defined becomes large;

µt considered in [12] is a distribution on R+ × [0, 1), whereas µt in Theorem 1.3

is on M(R+) × [0, 1). Hence it is necessary to extend the definition of the model,

compared to [12, 13].

Application: The model has successfully been applied to statistical explanation of rank-

ing data at an online bookstore Amazon.co.jp [14, 13] and data of list of subject

titles at a collected bulletin board 2ch.net [13]. These data arise as results of social

activities, hence it is inevitable that the data have day-night difference in their time

dependence. This motivates considering the inhomogeneous cases from an applica-

tion side.

Note that we directly see from (2), the Markov property

X
(N)
i (t + u) = X

(N)
i (u) +

N∑
k=1

∫ t

0
1X

(N)
k (s+u−0)>X

(N)
i (s+u−0)

ν̃
(N)
k (ds)

+

∫ t

0

(1 − X
(N)
i (s + u − 0)) ν̃

(N)
i (ds),

where we put ν̃
(N)
i (A) = ν

(N)
i (A + u). In practical application, this property enables us

to shift the time origin t = 0 to the time that a particle we observe jumps to the top,

namely, we may set X
(N)
i (0) = x

(N)
i = 1, by adjusting the ‘clock’ for the intensity mea-

sure accordingly. This motivates our formulating the model in terms of Poisson random

measures, even though in Proposition 1.1 we apparently do not use Markov properties.

Note also that if x
(N)
i = 1, then up to the first jump of i to the top, namely, for

t < τ
(N)
i,1 , comparison of (5) and (8) leads to

X
(N)
i (t) = X

(N)
C (t) + 1,
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because, if x
(N)
i = 1 then, x

(N)
i′ > x

(N)
i for all i′ �= i. Therefore, in practical application, we

may proceed with observing a trajectory (time development) of a single particle, putting

the time of its first jump to top as t = 0 and observing until its next jump to top, and

then apply Proposition 1.1 or Corollary 1.2 [13, 14].

The plan of the paper and a brief description of the role of the authors are as follows.

In Section 2 we prove Theorem 1.3, and we prove Theorem 1.4 in Section 3. In Section 4,

we state and prove Theorem 4.1, time-uniform results corresponding to Proposition 1.1

and Theorem 1.3. The core structure of the present work, including basic properties of

the stochastic ranking process which are essential for the proofs of these results, are based

on collaboration of K. Hattori and T. Hattori. In extending the previous results for the

convergence of empirical distribution on R+× [0, 1) to M(R+)× [0, 1), where M(R+) is a

space of Borel measures, we have to reformulate the process using Poisson random mea-

sures and provide abstract measure theory result Lemma 2.1, for which collaboration with

Hariya is crucial. Convergence result as measure valued processes developed in Section 4

is achieved by collaboration with Nagahata. Also, various technical refinements, implying

in particular stronger convergence with less assumptions for the uniform intensity case

[12], are results of the collaboration of these 4 authors. In Section 5 we consider a simple

case where the intensities of the Poisson random measures have a common time depen-

dence, and prove another scaling limit for the particle trajectory, corresponding to a time

change with respect to the intensity. This is a result of collaboration of T. Hattori, Hariya,

Kobayashi, and Takeshima at Tohoku University, and provides a mathematical result of

scaling limit with time changes, as well as a practically useful formula in applying the

present results to online rankings. A practical method based on this mathematical result

is partly checked by actual data obtained at 2ch.net in the master theses of Kobayashi

and Takeshima (unpublished). In Appendix, we give remarks to be kept in mind when

applying our results to practical data through statistical analysis.

Acknowledgment.

The authors would like to thank Professor Masayoshi Takeda for collaboration at

Tohoku University.

2 Proof of Theorem 1.3.

Throughout this section, we assume that the assumptions of Theorem 1.3 hold.

We first note the following rather technical generality.

Lemma 2.1. Let t > 0. If, for each y ∈ [0, 1) and for each bounded continuous
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function g : M(R+) → R, there exists Ω̃ with P[ Ω̃ ] = 1 such that

lim
N→∞

1

N

N∑
i=1

g(ρ
(N)
i ) 1Y

(N)
i (t)�y

(ω)

=

⎧⎪⎪⎨
⎪⎪⎩

∫
M(�+)

g(ρ) e−ρ((t−t0(y,t),t]) Λ(dρ) 0 � y � yC(t),∫
M(�+)

g(ρ) e−ρ((0,t]) µ0(dρ × [ŷ(y, t), 1)) yC(t) � y < 1,

(31)

holds on Ω̃, then the claim of Theorem 1.3 holds for this t. �

The point here is that Ω̃ may depend on y and g, while Theorem 1.3 claims the

existence of a sample set, independently of test functions.

We make use of the results in [2, Exercises 30.3, 31.2] for a proof of Lemma 2.1. Note

that M(R+) is not locally compact, while local compactness is assumed in the relevant

results of the reference. We prepare the next Lemma to fill the gap.

Lemma 2.2. There exists a countable subset T = {fn ; n ∈ N} of uniformly contin-

uous functions fn : M(R+) × [0, 1) → R, such that if for each fn ∈ T

lim
N→∞

∫
M(�+)×[0,1)

fn(ρ, y) νN(dρ × dy) =

∫
M(�+)×[0,1)

fn(ρ, y) ν(dρ × dy)(32)

holds for a sequence of Borel probability measures νN and a Borel probability measure ν

on M(R+) × [0, 1), then νN → ν, weakly as N → ∞. �

Proof. We noted below (13) that M(R+) × [0, 1) is a Polish space. Note also that

there exists a coutable set of continuous functions {en : R+ → R ; n ∈ N} of compact

support, such that

d((ρ1, y1), (ρ2, y2)) = |y1 − y2| +
∑
n∈�

2−n(1 ∧
∣∣∣∣
∫
�+

en(s) ρ1(ds) −
∫
�+

en(s) ρ2(ds)

∣∣∣∣),
(ρi, yi) ∈ M(R+) × [0, 1), i = 1, 2,

(33)

defines a metric d compatible with the topology we are considering [2, (31.4)].

Denote a set of sequences by R∞ = {x = (x1, x2, . . . )}, and define a metric d′ on

R∞ × [0, 1) by

d′((x1, y1), (x2, y2)) = |y1 − y2| +
∑
n∈�

2−n(1 ∧ |x1,n − x2,n|)(34)

where xi = (xi,1, xi,2, . . . ), i = 1, 2. We have a natural one-to-one map ι = (ι1, ι2, . . . , ι0) :

M(R+) × [0, 1) → R∞ × [0, 1) defined by

ι(ρ, y)n =

∫
�+

en(s) ρ(ds), n ∈ N, and ι(ρ, y)0 = y.(35)
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Put

E ′ = ι(M(R+) × [0, 1)) ⊂ R∞ × [0, 1).(36)

Then (33), (34) and (35) imply that ι : M(R+)×[0, 1) → E ′ is a one-to-one onto isometric

map. Since M(R+) × [0, 1) is complete, E ′ is a closed set in R∞ × [0, 1).

Let F ⊂ M(R+)× [0, 1) be a closed set. Since ι is isometric, ι(F ) is a closed subset of

E ′, and since E ′ is a closed set in R∞ × [0, 1), ι(F ) is a closed set in R∞ × [0, 1). Hence,

if a sequence of probability measures νN ◦ ι−1 on R∞× [0, 1) converges weakly as N → ∞
to ν ◦ ι−1, then

lim
N→∞

νN (F ) = lim
N→∞

νN ◦ ι−1(ι(F )) � ν ◦ ι−1(ι(F )) = ν(F ),

which implies νN → ν, weakly as N → ∞. Thus the conclusion of Lemma 2.2 is reduced

to a weak convergence νN ◦ ι−1 → ν ◦ ι−1 on R∞ × [0, 1).

For each k ∈ N define a projection to finite dimensional space πk : R∞ × [0, 1) →
Rk × [0, 1) by

πk(x) = (x1, x2, . . . , xk, y), x = (x1, x2, . . . , y) ∈ R∞ × [0, 1).(37)

Then νN ◦ ι−1 ◦ π−1
k and ν ◦ ι−1 ◦ π−1

k are probability measures on Rk × [0, 1). Note

that a Borel probability measure on Polish space is a Radon measure [2, Theorem 26.3],

and that the vague convergence of probability measures to a probability measure on Rk

is equivalent to the weak convergence [2, Theorem 30.8]. Since Rk × [0, 1) is a locally

compact Polish space, there exists a countable subset Tk = {fk,i ; i ∈ N} of continuous

functions fk,i : Rk × [0, 1) → R with compact support, such that if for each fk,i ∈ Tk

lim
N→∞

∫
�k×[0,1)

fk,i(z) νN ◦ ι−1 ◦ π−1
k (dz) =

∫
�k×[0,1)

fk,i(z) ν ◦ ι−1 ◦ π−1
k (dz)(38)

holds, then νN ◦ ι−1 ◦ π−1
k → ν ◦ ι−1 ◦ π−1

k , weakly as N → ∞ [2, Exercises 30.3, 31.2].

Let

T =
⋃
k∈�

{fk,i ◦ πk ◦ ι : M(R+) × [0, 1) → R ; fk,i ∈ Tk},

be the T in the assumption of Lemma 2.2. Since fk,i, π, ι are continuous, the functions

in T are continuous. Note further that since fk,i is of bounded support, the functions in

T are uniformly continuous. Since a countable union of countable sets is countable, T so

defined is a countable set. With this choice of T , the assumption (32), with a change in

integration variable z = πk ◦ ι(ρ, y), implies

lim
N→∞

∫
�k×[0,1)

fk,i(z) νN ◦ ι−1 ◦ π−1
k (dz) = lim

N→∞

∫
M(�+)×[0,1)

fk,i ◦ πk ◦ ι(ρ, y) νN(dρ × dy)

=

∫
M(�+)×[0,1)

fk,i ◦ πk ◦ ι(ρ, y) ν(dρ × dy) =

∫
�k×[0,1)

fk,i(z) ν ◦ ι−1 ◦ π−1
k (dz),
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for all k and i, which, as noted below (38), implies νN ◦ ι−1 ◦ π−1
k → ν ◦ ι−1 ◦ π−1

k , weakly

as N → ∞, for all k. This implies that as measures on R∞ × [0, 1), νN ◦ ι−1 → ν ◦ ι−1,

weakly as N → ∞ [3, §2 Example 2.4]. As noted in the paragraph between (36) and (37),

this further implies νN → ν, weakly as N → ∞.

Remark. We could alternatively make use of separability of M(R+) directly to obtain

a countable set T , following the discussion in [20, §1, Remark 4.17, and remark after

Corollary 9.3]. �

Proof of Lemma 2.1. Let T be as in Lemma 2.2. If there exists, for each n ∈ N,

Ω̃n ⊂ Ω such that (32) holds for ω ∈ Ω̃n and P[ Ω̃n ] = 1 holds, then Ω′ :=
⋂∞

n=1 Ω̃n

satisfies P[ Ω′ ] = 1 and (32) holds for all ω ∈ Ω′ and fn ∈ T , which, with Lemma 2.2,

implies Theorem 1.3.

Let d be the metric on M(R+)×[0, 1) as in the proof of Lemma 2.2. Let fn ∈ T . Since

fn is uniformly continuous, for any ε > 0 there exists δ > 0 such that for any ρ1, ρ2 ∈
M(R+) and y1, y2 ∈ [0, 1), d((ρ1, y1), (ρ2, y2)) < δ implies |fn(ρ1, y1)− fn(ρ2, y2)| < ε. Let

k be a positive integer greater than 1/δ and put

fn,k(ρ, y) =

k−1∑
l=0

fn(ρ, l/k)χ[l/k,(l+1)/k)(y),(39)

where χ[a,b)(y) = 1 if a � y < b and 0 otherwise. Then for each ρ ∈ M(R+) we have

sup
y∈[0,1)

|fn(ρ, y) − fn,k(ρ, y)| < ε.

Therefore, limk→∞ fn,k = fn uniformly on M(R+) × [0, 1). Noting that

χ[l/k,(l+1)/k) = χ[l/k,1) − χ[(l+1)/k,1) ,

we see from (39) that fn,k has an expression

fn,k(ρ, y) =

k−1∑
l=0

gn,k,l(ρ)χ[l/k,1)(y),

where gn,k,l : M(R+) → R is bounded continuous.

Therefore, if (31) holds, then using the definition (12) and the explicit formula (18)

claimed in Theorem 1.3, we see that there exists Ω̃n,k satisfying P[ Ω̃n,k ] = 1 and

lim
N→∞

∫
M(�+)×[0,1)

fn,k(ρ, y) µ
(N)
t (dρ × dy)(ω) =

∫
M(�+)×[0,1)

fn,k(ρ, y) µt(dρ × dy)

ifl ω ∈ Ω̃n,k . Hence, Ω̃n =
⋂∞

k=1 Ω̃n,k satisfies P[ Ω̃n ] = 1 and (32) holds for ω ∈ Ω̃n . �
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In view of Lemma 2.1, we fix (y, t) and a bounded continuous function g, in the

remainder of this section. Since g is bounded, there exists a constant M > 0 such that

|g(ρ)| � M, ρ ∈ M(R+).(40)

Since the jump times {τ (N)
i,1 } are independent, Proposition 1.1 is proved in a straightfor-

ward way. In contrast, {Y (N)
i } appearing in the left hand side of (31) are dependent, and

moreover, the non-linearity in (27) indicates that the dependence cannot be neglected in

the limit N → ∞. A strategy, inherited from the proof in [12], is to (i) choose a nice

quantity defined as a sum of independent random variables in such a way that the quan-

tity converges to the right hand side of (31), and (ii) show that the difference between

the chosen quantity and the left hand side of (31) can be shown to disappear in the limit,

using the properties of the model. We state these two steps explicitly in the following two

Lemmas, respectively.

Lemma 2.3. The following hold.

(i) For 0 � y � yC(t),

1

N

N∑
i=1

g(ρ
(N)
i ) 1ν

(N)
i ((t−t0(y,t),t])>0

→
∫
M(�+)

g(ρ) (1 − e−ρ((t−t0(y,t),t])) Λ(dρ),(41)

almost surely as N → ∞.

(ii) For yC(t) � y < 1,

1

N

N∑
i=1

g(ρ
(N)
i ) 1(x

(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

→
∫
M(�+)

g(ρ) e−ρ((0,t]) µ0(dρ × [ŷ(y, t), 1)),

(42)

almost surely as N → ∞. �

Lemma 2.4. The following hold.

(i) For 0 � y � yC(t),

1

N

N∑
i=1

| 1Y
(N)
i (t)<y

−1ν
(N)
i ((t−t0(y,t),t])>0

| → 0,(43)

almost surely as N → ∞.

(ii) For yC(t) � y < 1,

1

N

N∑
i=1

| 1Y
(N)
i (t)�y

−1(x
(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

| → 0,(44)

almost surely as N → ∞. �
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Proof of (31) assuming Lemma 2.3 and Lemma 2.4. For the case 0 � y � yC(t),

(40), (14), (41), and (43) imply∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1Y

(N)
i (t)�y

−
∫
M(�+)

g(ρ) e−ρ((t−t0(y,t),t]) Λ(dρ)

∣∣∣∣
=

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) (1 − 1Y

(N)
i (t)<y

) −
∫
M(�+)

g(ρ) e−ρ((t−t0(y,t),t]) Λ(dρ)

∣∣∣∣
=

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) (−1Y

(N)
i (t)<y

+ 1ν
(N)
i ((t−t0(y,t),t])>0

)

+

(
1

N

N∑
i=1

g(ρ
(N)
i ) −

∫
M(�+)

g(ρ) Λ(dρ)

)

+

(
− 1

N

N∑
i=1

g(ρ
(N)
i ) 1ν

(N)
i ((t−t0(y,t),t])>0

+

∫
M(�+)

g(ρ) (1 − e−ρ((t−t0(y,t),t])) Λ(dρ)

)∣∣∣∣
� M

1

N

N∑
i=1

| 1Y
(N)
i (t)<y

−1ν
(N)
i ((t−t0(y,t),t])>0

|

+

∣∣∣∣
∫
M(�+)

g(ρ) Λ(N)(dρ) −
∫
M(�+)

g(ρ) Λ(dρ)

∣∣∣∣
+

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1ν

(N)
i ((t−t0(y,t),t])>0

−
∫
M(�+)

g(ρ) (1 − e−ρ((t−t0(y,t),t])) Λ(dρ)

∣∣∣∣
→ 0, a.s., as N → ∞,

which proves (31) for 0 � y � yC(t).

Similarly, for the case yC(t) � y < 1, (40), (42), and (44) imply∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1Y

(N)
i (t)�y

−
∫
M(�+)

g(ρ) e−ρ((0,t]) µ0(dρ × [ŷ(y, t), 1))

∣∣∣∣
=

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i )

(
1Y

(N)
i (t)�y

−1(x
(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

)

+

(
1

N

N∑
i=1

g(ρ
(N)
i ) 1(x

(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

−
∫
M(�+)

g(ρ)e−ρ((0,t]) µ0(dρ × [ŷ(y, t), 1))

)∣∣∣∣
� M

1

N

N∑
i=1

| 1Y
(N)
i (t)�y

−1(x
(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

|

+

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1(x

(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

−
∫
M(�+)

g(ρ)e−ρ((0,t]) µ0(dρ × [ŷ(y, t), 1))

∣∣∣∣ → 0, a.s., as N → ∞,

which proves (31) for yC(t) � y < 1. �

14



Before proving Lemma 2.3 and Lemma 2.4, we prepare a couple of random variables

which converge as N → ∞ to yA in (19) and yB in (21). The following Lemma 2.5 is used

in the proof of Lemma 2.4, and the proof of Lemma 2.3 is similar to that of Lemma 2.5.

Lemma 2.5. (i) For 0 � t0 � t define

Y
(N)
A (t0, t) =

1

N

N∑
i=1

1ν
(N)
i ((t−t0,t])>0

.(45)

Then Y
(N)
A (t0, t) → yA(t0, t), almost surely as N → ∞.

(ii) For t � 0 and 0 � y0 < 1 define

Y
(N)
B (y0, t) = y0 +

1

N

∑
i; (x

(N)
i −1)/N�y0

1τ
(N)
i,1 �t

.(46)

Then Y
(N)
B (y0, t) → yB(y0, t), almost surely as N → ∞. �

Proof. As in the proof of Proposition 1.1, a strong law of large numbers implies,

almost surely as N → ∞

Y
(N)
A (t0, t) − E[ Y

(N)
A (t0, t) ] → 0 and Y

(N)
B (y0, t) − E[ Y

(N)
B (y0, t) ] → 0.

On the other hand, (16) and (17) imply

lim
N→∞

E[ Y
(N)
A (t0, t) ] = lim

N→∞
1

N

N∑
i=1

(1 − P[ ν
(N)
i ((t − t0, t]) = 0 ])

= lim
N→∞

1

N

N∑
i=1

(1 − e−ρ
(N)
i ((t−t0 ,t])) = 1 − lim

N→∞

∫
M(�+)

e−ρ((t−t0 ,t])Λ(N)(dρ)

= 1 − lim
N→∞

∫ ∞

0

e−sλ
(N)
t−t0,t(ds) = 1 −

∫
M(�+)

e−ρ((t−t0,t])Λ(dρ) = yA(t0, t).

Similarly,

lim
N→∞

E[ Y
(N)
B (y0, t) ] = y0 + lim

N→∞
1

N

∑
i; (x

(N)
i −1)/N�y0

P[ τ
(N)
i,1 � t ]

= y0 + lim
N→∞

1

N

∑
i; (x

(N)
i −1)/N�y0

(1 − e−ρ
(N)
i ((0,t]))

= y0 + 1 − y0 − lim
N→∞

∫
M(�+)

e−ρ((0,t])µ
(N)
0 (dρ × [y0, 1))

= 1 −
∫
M(�+)

e−ρ((0,t])µ0(dρ × [y0, 1)) = yB(y0, t).
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Proof of Lemma 2.3. The proof is a repetition of the proof of Lemma 2.5, by replac-

ing 1ν
(N)
i ((t−t0 ,t])>0

with g(ρ
(N)
i ) 1ν

(N)
i ((t−t0(y,t),t])>0

for (41), and 1τ
(N)
i,1 �t

with g(ρ
(N)
i ) 1τ

(N)
i,1 >t

for (42). �

The proof of (31) now will be complete if we prove Lemma 2.4, which is proved in a

similar way as the corresponding part in [12].

Proof of (43) for 0 � y � yC(t). Note that yA(t0, t) of (19) is non-decreasing in t0

and t, with yA(0, t) = 0 and yA(t, t) = yC(t), and by assumption of the Theorem 1.3, is

continuous. Hence

yA(t0(y, t), t) = y, 0 � y � yC(t), t � 0.(47)

Lemma 2.5 therefore implies that there exists ΩA ⊂ Ω, satisfying P[ ΩA ] = 1, such

that

lim
N→∞

Y
(N)
A (t0(y, t), t)(ω) = y, ω ∈ ΩA .(48)

Fix ω ∈ ΩA arbitrarily. The definition of the stochastic ranking process and (45) im-

ply that ν
(N)
i ((t − t0(y, t), t])(ω) > 0, if and only if Y

(N)
i (t)(ω) is on the top side of

Y
(N)
A (t0(y, t), t)(ω); Y

(N)
i (t)(ω) < Y

(N)
A (t0(y, t), t)(ω). Therefore

1

N

N∑
i=1

| 1Y
(N)
i (t)<y

(ω) − 1ν
(N)
i ((t−t0(y,t),t])>0

(ω)|

=
1

N

N∑
i=1

| 1Y
(N)
i (t)<y

(ω) − 1Y
(N)
i (t)<Y

(N)
A (t0(y,t),t)

(ω)|.
(49)

Note that the definition of Y
(N)
i (t) in (6) implies that it takes values in {k/N ; k =

0, 1, . . . , N − 1}. Hence (48) implies

lim
N→∞

1

N

N∑
i=1

| 1Y
(N)
i (t)<y

(ω) − 1Y
(N)
i (t)<Y

(N)
A (t0(y,t),t)

(ω)|

� lim
N→∞

1

N
× (N |Y (N)

A (t0(y, t), t)(ω) − y| + 1) = 0.

(50)

The relations (49) and (50) imply (43). �

Proof of (44) for yC(t) � y < 1. yB(y, t) of (21) is non-decreasing in y and t, with

yB(0, t) = yC(t) and yB(1−, t) = 1− 0, and by assumption of the Theorem 1.3, is contin-

uous. Hence

yB(ŷ(y, t), t) = y, yC(t) � y < 1, t � 0.(51)
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Lemma 2.5 therefore implies that there exists ΩB ⊂ Ω, satisfying P[ ΩB ] = 1, such that

lim
N→∞

Y
(N)
B (ŷ(y, t), t)(ω) = y, ω ∈ ΩB .(52)

Fix ω ∈ ΩB arbitrarily. The definition of the stochastic ranking process and (46) imply

that (x
(N)
i − 1)/N � ŷ(y, t) and τ

(N)
i,1 (ω) > t hold together, if and only if Y

(N)
i (t)(ω) is on

the tail side of Y
(N)
B (ŷ(y, t), t)(ω); Y

(N)
i (t)(ω) � Y

(N)
B (t0(y, t), t)(ω). Therefore

1

N

N∑
i=1

| 1Y
(N)
i (t)�y

(ω) − 1(x
(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

(ω)|

=
1

N

N∑
i=1

| 1Y
(N)
i (t)�y

(ω) − 1Y
(N)
i (t)�Y

(N)
B (ŷ(y,t),t)

(ω)|.
(53)

As in the proof of (43), Y
(N)
i (t) takes values in {k/N ; k = 0, 1, . . . , N−1}, which implies,

with (52),

lim
N→∞

1

N

N∑
i=1

| 1Y
(N)
i (t)�y

(ω) − 1(x
(N)
i −1)/N�ŷ(y,t), τ

(N)
i,1 >t

(ω)|

� lim
N→∞

1

N
× (N |Y (N)

B (ŷ(y, t), t)(ω)− y| + 1) = 0.

(54)

The relations (53) and (54) imply (44). �

This completes the proof of Lemma 2.4, hence of Theorem 1.3.

3 Proof of Theorem 1.4.

To prove Theorem 1.4, we apply a standard method of characteristic curves.

First, assume 0 � y � yC(t) = yA(t, t). Let t1 � 0, and consider an ordinary differen-

tial equation for a characteristic curve intersecting (0, t1), defined by

d y

dt
(t) =

k∑
β=1

wβ(t) Uβ(y(t), t), α = 1, 2, . . . , k, t � t1 ,

y(t1) = 0.

(55)

Put

ϕα(t) = Uα(y(t), t), α = 1, 2, . . . , k, t � t1 .(56)

Then (56), (27), and (55) imply

d ϕα

dt
(t) = −wα(t)Uα(y(t), t) = −wα(t)ϕα(t),(57)
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which, with y(t1) = 0 in (55), has a unique solution

ϕα(t) = Uα(0, t1) exp(−
∫ t

t1

wα(u)du) = rα exp(−
∫ t

t1

wα(u)du),(58)

where we also used (28). Substituting (56) and (58) in (55), we have

d y

dt
(t) =

k∑
β=1

wβ(t) rβ exp(−
∫ t

t1

wβ(u)du),

which, with y(t1) = 0, has a unique solution

y(t) =

k∑
β=1

rβ (1 − exp(−
∫ t

t1

wβ(u)du)) = yA(t − t1, t).(59)

where we also used
∑k

β=1 rβ = 1 in (26) and (24) with (30), in the last equality. The

assumptions for wα in Theorem 1.4 imply that yA(t0, t) is strictly increasing and differ-

entiable in t0 , satisfying yA(0, t) = 0 and yA(t, t) = yC(t). Hence there exists a unique,

strictly increasing, differentiable inverse function t0 = t0(y, t), taking values in [0, t], sat-

isfying

yA(t0(y, t), t) = y, 0 � y � yC(t), t � 0.

This, with (56), (58), and (59), implies

Uα(y, t) = rα exp(−
∫ t

t−t0(y,t)

wα(u)du),

which proves (23) for 0 � y � yC(t).

Next, assume yC(t) = yB(0, t) � y < 1. Let 0 � y0 < 1, and consider an ordinary

differential equation for a characteristic curve intersecting (y0, 0), defined by

d y

dt
(t) =

k∑
β=1

wβ(t) Uβ(y(t), t), α = 1, 2, . . . , k, t � 0 ,

y(0) = y0 .

(60)

Put

ϕα(t) = Uα(y(t), t), α = 1, 2, . . . , k, t � t1 .(61)

Then (61), (27), and (60) imply, exactly as for the case y � yC(t),

d ϕα

dt
(t) = −wα(t)ϕα(t),(62)
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which, with y(0) = y0, has a unique solution

ϕα(t) = uα(y0) exp(−
∫ t

0

wα(u)du),(63)

where we also used (29). Substituting (61) and (63) in (60), we have another differential

equation for y(t), which, with y(0) = y0, has a unique solution

y(t) = yB(y0, t),(64)

where we used
∑k

β=1 uβ(y) = 1 − y in (26) and (25) with (30). The assumptions for uα

in Theorem 1.4 imply that yB(y, t) is strictly increasing and differentiable in y , satisfying

yB(0, t) = yC(t) and yB(1−, t) = 1−. Hence there exists a unique, strictly increasing,

differentiable inverse function ŷ(y, t), taking values in [0, 1), satisfying

yB(ŷ(y, t), t) = y, yC(t) � y < 1, t � 0.

As in the proof for y � yC(t), this, with (61), (63), and (64), implies (23) for yC(t) � y < 1.

This completes a proof of Theorem 1.4. �

4 Scaling limit results uniform in time.

Let T > 0 and

I = {r(N)
i : [0, T ] → R+ ; i = 1, 2, . . . , N, N ∈ N}(65)

be a set of continuous functions on [0, T ] defined by r
(N)
i (t) = ρ

(N)
i ((0, t]), t � 0. Note

that since we assumed in the beginning that ρ
(N)
i is continuous, r

(N)
i is continuous. In this

section, we prove the following.

Theorem 4.1. Let T > 0. In addition to the assumptions in Proposition 1.1, assume

that a set of continuous functions I defined by (65) is uniformly equicontinuous; namely,

lim
δ↓0

sup
r∈I

sup
s,t∈[0,T ]; |s−t|�δ

|r(s) − r(t)| = 0.(66)

Then, Y
(N)
C of (10) converges almost surely to yC of (11) as N → ∞, as a sequence in the

space of continuous functions on [0, T ] with supremum norm:

P

[
lim

N→∞
sup

t∈[0,T ]

|Y (N)
C (t) − yC(t)| = 0

]
= 1.(67)
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Assume next that all the assumptions of Theorem 1.3 and (66) hold. Assume also that

a set of functions

J = {r : [0, T ] → R+ ; r(t) = ρ((0, t]), t ∈ [0, T ], ρ ∈ suppt Λ}

is uniformly equicontinuous, and that for yA of (19) and yB of (21), yA(t − t1, t) and

yB(y, t) are equicontinuous in (t1, t) and (y, t), respectively. Then, µ
(N)
· of (12) converges

almost surely to µ· of (18) as N → ∞, as a sequence in the space of probability measure

valued functions µ· : t 	→ µt with supremum norm. �

Proof. First we assume that the assumptions of Proposition 1.1 and (66) hold. Note

that (1) implies that, for i = 1, 2, . . . , N , N = 1, 2, . . . ,

ν
(N)
i ((0, t]) − r

(N)
i (t) = ν

(N)
i ((0, t]) − ρ

(N)
i ((0, t]), t � 0,

is a martingale up to fixed time T . Note also that (3) implies

ν
(N)
i ((0, t ∧ τ

(N)
i,1 ]) = 1τ

(N)
i,1 �t

.(68)

Hence

W
(N)
i (t) := 1τ

(N)
i,1 �t

−r
(N)
i (t ∧ τ

(N)
i,1 ), t ∈ [0, T ],(69)

is a bounded martingale. This with (10) further implies that

Y N
C (t) − 1

N

N∑
i=1

r
(N)
i (t ∧ τ

(N)
i,1 ) =

1

N

N∑
i=1

(1τ
(N)
i,1 �t

−r
(N)
i (t ∧ τ

(N)
i,1 )) =

1

N

N∑
i=1

W
(N)
i (t)

is also a bounded martingale. Using Doob’s inequality, independence of {τ (N)
i,1 ; i =

1, 2, . . . , N}, and |W (N)
i (T )| � 1, we have

E

[
sup

0�t�T

(
1

N

N∑
i=1

W
(N)
i (t)

)4
]

� 44

34
E

[ (
1

N

N∑
i=1

W
(N)
i (T )

)4
]

� 44

33N2
.

With an argument similar to that in the proof of Proposition 1.1,

sup
0�t�T

∣∣∣∣ 1

N

N∑
i=1

W
(N)
i (t)

∣∣∣∣ → 0, a.e., as N → ∞.(70)

On the other hand, for each 0 � t � T , as in the proof of Proposition 1.1, independence

and boundedness of r
(N)
i (t ∧ τ

(N)
i,1 ), i = 1, 2, . . . , N , imply

1

N

N∑
i=1

r
(N)
i (t ∧ τ

(N)
i,1 ) − 1

N

N∑
i=1

E[ r
(N)
i (t ∧ τ

(N)
i,1 ) ] → 0, a.e., as N → ∞,(71)
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and

E[ r
(N)
i (t ∧ τ

(N)
i,1 ) ] = E[ 1τ

(N)
i,1 �t

] − E[ W
(N)
i (t) ] = E[ 1τ

(N)
i,1 �t

]

implies

lim
N→∞

1

N

N∑
i=1

E[ r
(N)
i (t ∧ τ

(N)
i,1 ) ] = lim

N→∞
E[ Y

(N)
C (t) ] = yC(t).(72)

Since Y
(N)
C (t) is non-decreasing in t, and yC(t) is its pointwise limit, it is also non-

decreasing. As in the case of Corollary 1.2, (71) and (72) imply that, with probability

one,

1

N

N∑
i=1

r
(N)
i (t ∧ τ

(N)
i,1 ) → yC(t), t ∈ Q ∩ [0, T ], as N → ∞.(73)

Since {r(N)
i } is equicontinuous, (73) implies that yC is continuous on rationals, and the

monotonicity of yC proves that it is continuous on [0, T ].

By assumption of equicontinuity and the convergence (73) on a dense subset of [0, T ],

it follows that the convergence is uniform:

sup
t∈[0,T ]

∣∣∣∣ 1

N

N∑
i=1

r
(N)
i (t ∧ τ

(N)
i,1 ) − yC(t)

∣∣∣∣ → 0, a.e., as N → ∞.(74)

The equations (10), (69), (70), (74) prove (67).

In the remainder of this section, we assume that the assumptions of Theorem 4.1 hold.

To prove uniform convergence of µ
(N)
t , we first prepare t-uniform version of Lemma 2.1.

Lemma 4.2. If, for each y ∈ [0, 1) and for each bounded continuous function g :

M(R+) → R, there exists Ω̃ with P[ Ω̃ ] = 1 such that, for each ω ∈ Ω̃,

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣
∫
M(�+)

g(ρ) µ
(N)
t (dρ × [y, 1))(ω)−

∫
M(�+)

g(ρ) µt(dρ × [y, 1))

∣∣∣∣ = 0,(75)

then µ
(N)
t converges to µt uniformly in t ∈ [0, T ] as N → ∞, almost surely. �

Proof. Let T = {fn ; n ∈ N} be as in the proof of Lemma 2.1, and for probability

measures µ and ν on M(R+) × [0, 1), put

π(µ, ν)

:=

∞∑
n=1

2−n

(∣∣∣∣
∫
M(�+)×[0,1)

fn(ρ, y) µ(dρ× dy) −
∫
M(�+)×[0,1)

fn(ρ, y) ν(dρ × dy)

∣∣∣∣ ∧ 1

)
.
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Then π is a metric on the space of probability measures on M(R+) × [0, 1), and the

convergence with respect to π is equivalent to convergence (32) for each fn ∈ T . Hence,

as noted just below (32), it is equivalent to weak convergence of the probability measures

on M(R+) × [0, 1).

Now assume that (75) holds. Then following the arguments of the proof of Lemma 2.1,

replacing (31) by (75), we see that there exists Ω′ ⊂ Ω such that P[ Ω′ ] = 1 and

lim
N→∞

sup
t∈[0,T ]

∣∣∣∣
∫
M(�+)×[0,1)

fn(ρ, y)µ
(N)
t (dρ × dy)(ω)−

∫
M(�+)×[0,1)

fn(ρ, y)µt(dρ × dy)

∣∣∣∣ = 0,

for all n ∈ N and ω ∈ Ω′. Therefore,

lim
N→∞

sup
t∈[0,T ]

π(µ
(N)
t (ω), µt) = 0, ω ∈ Ω′,

which, by the equivalence of convergence in π and the convergence in the weak topology

of the space of probability measures on M(R+) × [0, 1), implies the almost sure uniform

convergence in t ∈ [0, T ], of µ
(N)
t to µt.

In view of Lemma 4.2, we fix y ∈ [0, 1) and a bounded continuous function g, in the

remainder of this section. Note that (40) holds. The assumption Λ(N) → Λ in (14) further

implies that for any K > 0 there exists a positive integer N0 such that, for N > N0 ,

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) −

∫
M(�+)

g(ρ) Λ(dρ)

∣∣∣∣ =

∣∣∣∣
∫
M(�+)

g(ρ) Λ(N)(dρ) −
∫
M(�+)

g(ρ) Λ(dρ)

∣∣∣∣ <
M

K
.

(76)

The following Lemma corresponds to Lemma 2.5.

Lemma 4.3. For each t1 ∈ [0, T ], Y
(N)
A of (45) and yA of (19) satisfy

sup
t∈[t1,T ]

|Y (N)
A (t − t1, t) − yA(t − t1, t)| → 0, a.e., as N → ∞,(77)

and for each y0 ∈ [0, 1), Y
(N)
B of (46) and yB of (21) satisfy

sup
t∈[0,T ]

|Y (N)
B (y0, t) − yB(y0, t)| → 0, a.e., as N → ∞.(78)

�

Proof. Define, for i = 1, 2, . . . , N , N = 1, 2, . . . ,

τ̃
(N)
i = τ

(N)
i,ki

,

where ki := inf{j ; τ
(N)
i,j > t1}. Then just as in the proof of (67), we see that

V
(N)
i (t) := 1τ̃

(N)
i �t

−ρ
(N)
i ((t1, t ∧ τ̃

(N)
i ]), t ∈ [t1, T ]
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and, with (45), accordingly,

Y N
A (t − t1, t) −

1

N

N∑
i=1

ρ
(N)
i ((t1, t ∧ τ̃

(N)
i ]) =

1

N

N∑
i=1

V
(N)
i (t), t ∈ [t1, T ](79)

are bounded martingales, and we have

sup
t1�t�T

∣∣∣∣ 1

N

N∑
i=1

V
(N)
i (t)

∣∣∣∣ → 0, t ∈ Q ∩ [0, T ], a.e., as N → ∞.(80)

On the other hand, we have with probability one,

1

N

N∑
i=1

ρ
(N)
i ((t1, t ∧ τ̃

(N)
i ]) = yA(t − t1, t), t ∈ Q ∩ [0, T ], as N → ∞.(81)

By assumptions of equicontinuity and the convergence (81) on a dense subset of [0, T ],

it follows that the convergence is uniform:

sup
t∈[0,T ]

∣∣∣∣ 1

N

N∑
i=1

ρ
(N)
i ((t1, t ∧ τ

(N)
i ]) − yA(t − t1, t)

∣∣∣∣ → 0, a.e., as N → ∞.(82)

The equations (79), (80) and (82) lead to (77).

A proof of (78) goes in exact correspondence with that of (67), if we directly use the

assumption of continuity of yB in place of monotonicity of yC .

Corollary 4.4. For each t1 ∈ [0, T ],

sup
t∈[t1,T ]

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1ν

(N)
i ((t1,t])>0

−
∫
M(�+)

g(ρ) (1 − e−ρ((t1,t])) Λ(dρ)

∣∣∣∣ → 0,(83)

almost surely as N → ∞, and for each y0 ∈ [0, 1),

sup
t∈[0,T ]

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1(x

(N)
i −1)/N�y0 , τ

(N)
i,1 >t

−
∫
M(�+)

g(ρ) e−ρ((0,t]) µ0(dρ × [y0, 1))

∣∣∣∣ → 0,

(84)

almost surely as N → ∞. �

Proof. This is proved as in the proof of Lemma 4.3, if one notes (40).

Fix a positive integer K arbitrarily. By the assumptions of Theorem 4.1 of uniform

equicontinuity of J , yA and yB, and noting that µ0(M(R+) × [y, 1)) = 1 − y, there exist

a positive integer L and sequences 0 = t1,0 < t1,1 < · · · < t1,L = T and 0 = y0,0 < y0,1 <

· · · < y0,L = 1 such that
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(i) for j = 0, 1, 2, . . . , M and s ∈ [t1,j−1 , t1,j+1],∫
M(�+)

|e−ρ((t1,j ,t]) − e−ρ(s,t])|Λ(dρ) <
1

K
,(85)

where, for convenience we put t1,j = 0 if j � 0, and t1,j = T if j � L, and also for

j = 0, 1, 2, . . . , M and z ∈ [y0,j−1 , y0,j+1],∣∣∣∣
∫
M(�+)

g(ρ)e−ρ((0,t])µ0(dρ × [y0,j, 1)) −
∫
M(�+)

g(ρ)e−ρ((0,t])µ0(dρ × [z, 1))

∣∣∣∣
=

∣∣∣∣
∫
M(�+)

g(ρ)e−ρ((0,t])µ0(dρ × [y0,j ∧ z, y0,j ∨ z))

∣∣∣∣ <
M

K
,

(86)

where, we put y0,j = 0 if j � 0, and y0,j = 1 if j � L,

(ii) the sequences of functions yA,j(t) = yA((t − t1,j) ∨ 0, t), j = 0, 1, 2, . . . , L, which is

decreasing in j, and yB,j(t) = yB(y0,j, t), j = 0, 1, 2, . . . , L − 1, which is increasing

in j, satisfy

0 � yA,j(t) − yA,j+1(t) <
1

K
, j = 0, 1, 2, . . . , L − 1, t ∈ [0, T ],(87)

and

0 � yB,j+1(t) − yB,j(t) <
1

K
, j = 0, 1, 2, . . . , L − 2, t ∈ [0, T ].(88)

Lemma 4.3 and Corollary 4.4 imply that there exists Ω̃K ⊂ Ω, satisfying P[ Ω̃K ] = 1,

such that for all ω ∈ Ω̃K there exists an integer N0 = N0(ω) such that if N > N0 then

|Y (N)
A (t − t1,j, t)(ω) − yA,j(t)| <

1

K
, t ∈ [t1,j, T ], j = 0, 1, . . . , L,(89)

|Y (N)
B (y0,j, t)(ω) − yB,j(t)| <

1

K
, j = 0, 1, . . . , L, t ∈ [0, T ],(90)

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1ν

(N)
i ((t1,j ,t])>0

(ω) −
∫
M(�+)

g(ρ) (1 − e−ρ((t1,j ,t])) Λ(dρ)

∣∣∣∣ <
M

K
,

t ∈ [t1,j , T ], j = 0, 1, . . . , L,

(91)

and ∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1(x

(N)
i −1)/N�y0,j , τ

(N)
i,1 >t

(ω) −
∫
M(�+)

g(ρ) e−ρ((0,t]) µ0(dρ × [y0,j, 1))

∣∣∣∣
<

M

K
, j = 0, 1, . . . , L − 1, t ∈ [0, T ].

(92)
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Now, we shall consider the case yC(t) � y and the case yC(t) � y separately. First,

let yC(t) � y, and let j = j(t) be the integer such that

yA,j(t) � y < yA,j−1(t).(93)

Note that yC(t) � y implies y = yA(t0(y, t), t) (see (47)), with which yA,0(t) = yA(t, t) =

yC(t), yA,L(t) = yA(0, t) = 0, and monotonicity of yA(t0, t) with respect to t0 imply that

such an integer j = j(t) exists if yC(t) � y. Since yA(t0, t) is increasing in t0 , (93) also

implies

t1,j−1 < t − t0(y, t) � t1,j .(94)

Since (87) implies

0 � y − yA,j(t) � yA,j−1(t) − yA,j(t) <
1

K
,

with (89) and a similar argument as for (50), we have

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) (1Y

(N)
i (t)<y

−1Y
(N)
i (t)<Y

(N)
A (t−t1,j ,t)

)(ω)

∣∣∣∣
� 1

N

N∑
i=1

|g(ρ
(N)
i )|

∣∣∣∣1Y
(N)
i (t)<y

−1Y
(N)
i (t)<yA,j (t)

∣∣∣∣(ω)

+
1

N

N∑
i=1

|g(ρ
(N)
i )|

∣∣∣∣1Y
(N)
i (t)<yA,j (t)

−1Y
(N)
i (t)<Y

(N)
A (t−t1,j ,t)

∣∣∣∣(ω)

� M(y − yA,j(t)) + M |Y (N)
A (t − t1,j , t)(ω) − yA,j(t)| <

2M

K
.

(95)

Note also that, as in the argument for (49),

1ν
(N)
i ((t1,j ,t])>0

= 1Y
(N)
i (t)<Y

(N)
A (t−t1,j ,t)

.(96)

Adding up (76), (95), (91) and (85), and using (96) and triangular inequality, we arrive

at

sup
t∈[0,T ]; yC(t)�y

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1Y

(N)
i (t)�y

(ω) −
∫
M(�+)

g(ρ) e−ρ((t−t0(y,t),t]) Λ(dρ)

∣∣∣∣
� sup

t∈[0,T ]; yC(t)�y

∣∣∣∣
(

1

N

N∑
i=1

g(ρ
(N)
i ) −

∫
M(�+)

g(ρ) Λ(dρ)

)

−
(

1

N

N∑
i=1

g(ρ
(N)
i ) 1Y

(N)
i (t)<y

(ω) −
∫
M(�+)

g(ρ) (1 − e−ρ((t−t0(y,t),t])) Λ(dρ)

)∣∣∣∣
� 5M

K
,

(97)
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for ω ∈ Ω̃K and N > N0(ω).

Next, let yC(t) � y, and let j = j(t) be the integer such that

yB,j(t) � y < yB,j+1(t).(98)

With an argument similar as that below (93), such an integer j = j(t) exists if yC(t) � y.

Since yB(y0, t) is increasing in y0 , (98) also implies

y0,j < ŷ(y, t) � y0,j+1.(99)

Since (88) implies

0 � y − yB,j(t) � yB,j+1(t) − yB,j(t) <
1

K
,

with (90) and a similar argument as for (54), we have

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) (1Y

(N)
i (t)�y

−1Y
(N)
i (t)�Y

(N)
B (y0,j ,t)

)(ω)

∣∣∣∣
� 1

N

N∑
i=1

|g(ρ
(N)
i )|

∣∣∣∣1Y
(N)
i (t)�y

−1Y
(N)
i (t)�yB,j (t)

∣∣∣∣(ω)

+
1

N

N∑
i=1

|g(ρ
(N)
i )|

∣∣∣∣1Y
(N)
i (t)�yB,j (t)

−1Y
(N)
i (t)�Y

(N)
B (y0,j ,t)

∣∣∣∣(ω)

� M(y − yB,j(t)) + M |Y (N)
B (y0,j, t)(ω) − yB,j(t)| <

2M

K
.

(100)

Note also that, as in the argument for (53),

1(x
(N)
i −1)/N�y0,j , τ

(N)
i,1 >t

= 1Y
(N)
i (t)�Y

(N)
B (y0,j ,t)

.(101)

Adding up (100), (92) and (86), and using (101) and triangular inequality, we arrive

at

sup
t∈[0,T ]; yC(t)�y

∣∣∣∣ 1

N

N∑
i=1

g(ρ
(N)
i ) 1Y

(N)
i (t)�y

(ω) −
∫
M(�+)

g(ρ) e−ρ((0,t]) µ0(dρ × [ŷ(y, t), 1))

∣∣∣∣
� 4M

K
,

(102)

for ω ∈ Ω̃K and N > N0(ω).

Combining (97) and (102), we have

sup
t∈[0,T ]

∣∣∣∣
∫
M(�+)

g(ρ) µ
(N)
t (dρ × [y, 1))(ω)−

∫
M(�+)

g(ρ) µt(dρ × [y, 1))

∣∣∣∣ � 5M

K
,

N > N0(ω), ω ∈ Ω̃K .
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Finally, put Ω̃ =
⋂∞

K=1 Ω̃K . Then P[ Ω̃ ] = 1. Let ω ∈ Ω̃. For any ε > 0 take an integer

K such that K > 5M/ε . Then ω ∈ Ω̃ ⊂ Ω̃K implies

sup
t∈[0,T ]

∣∣∣∣
∫
M(�+)

g(ρ) µ
(N)
t (dρ × [y, 1))(ω)−

∫
M(�+)

g(ρ) µt(dρ × [y, 1))

∣∣∣∣ � 5M

K
< ε,

for N > N0(ω), which implies (75), and therefore Lemma 4.2 implies the Theorem.

5 Case when the intensities have common time de-

pendence.

To consider the case where the intensity measure ρ has a density, denote the set of locally

integrable functions on R+ by L1
loc(R+). L1

loc(R+) is a complete separable metric space.

Let ι be a map ι : L1
loc(R+) → M(R+) which maps w̃ ∈ L1

loc(R+) to the measure on R+

with density w̃ determined by

ι(w̃)((s, t]) =

∫ t

s

w̃(u) du, 0 � s < t.(103)

Proposition 5.1. Assume that w̃
(N)
i ∈ L1

loc(R+), i = 1, 2, . . . , N , N = 1, 2, . . . , and

for each N , put

Λ̃(N) =
1

N

N∑
i=1

δ
w̃

(N)
i

.

If there exists a probability distribution Λ̃ on L1
loc(R+) such that Λ̃(N) converges weakly to

Λ̃ as N → ∞, then the sequence of distribution Λ(N), N = 1, 2, . . . , on the set of intensity

measures M(R+) defined by Λ(N) = Λ̃(N) ◦ ι−1, with ι as in (103), converges weakly as

N → ∞ to Λ := Λ̃ ◦ ι−1. Moreover, for all 0 � s < t, λ
(N)
s,t defined by (16) converges

weakly as N → ∞ to λs,t defined by (17). �

Proof. Let g : M(R+) → R be a bounded continuous function on M(R+). Then

the definitions imply∫
M(�+)

g(ρ) Λ(N)(dρ) =

∫
L1

loc(�+)

g(ι(w̃)) Λ̃(N)(dw̃).

Let {w̃n} be a sequence converging in L1
loc(R+) to w̃, and let f : R+ → R be a continuous

function with compact support: f(u) = 0, u � k, for some integer k. Then f is bounded:

|f(u)| � M , u ∈ R+, for some M . Hence∣∣∣∣
∫
�+

f(u) w̃n(u) du −
∫
�+

f(u) w̃(u) du

∣∣∣∣ =

∣∣∣∣
∫ k

0

f(u) w̃n(u) du −
∫ k

0

f(u) w̃(u) du

∣∣∣∣
� M

∫ k

0

|w̃n(u) − w̃(u)| du → 0, n → ∞.
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This holds for all continuous function f with compact support, hence limn→∞ ι(w̃n) = ι(w̃)

in vague topology, which further implies

lim
n→∞

g(ι(w̃n)) = g(ι(w̃)).

This proves that g ◦ ι : L1
loc(R+) → R is a bounded continuous function, hence the

assumption Λ̃(N) → Λ̃ implies

lim
N→∞

∫
M(�+)

g(ρ) Λ(N)(dρ) =

∫
M(�+)

g(ρ) Λ(dρ).

This holds for any bounded continuous function g, which proves Λ(N) → Λ, weakly as

N → ∞.

Let t > s > 0 and put b[w̃] =
∫ t

s
w̃(u) du. In a similar way as above, the definitions

imply

λ
(N)
s,t =

∫
L1

loc(�+)

δb[w̃]Λ̃
(N)(dw̃) and λs,t =

∫
L1

loc(�+)

δb[w̃]Λ̃(dw̃).

Let h : R+ → R be a bounded continuous function. Then the map

L1
loc(R+) � w̃ 	→ h(b[w̃]) ∈ R

is bounded and continuous, hence the assumption Λ̃(N) → Λ̃ implies∫
�+

h(w) λ
(N)
s,t (dw) =

∫
L1

loc(�+)

h(b[w̃])Λ̃(N)(dw̃)

→
∫

L1
loc(�+)

h(b[w̃])Λ̃(dw̃) =

∫
�+

h(w) λs,t(dw), N → ∞,

hence λ
(N)
s,t → λs,t, weakly as N → ∞.

Proposition 5.1 implies that the assumption (17) in Theorem 1.3 is redundant if the

intensity measures have densities.

For the rest of this section, we further assume a common time dependence for all

w̃
(N)
i in Proposition 5.1. Namely, we assume that there exist ã ∈ L1

loc(R+) and positive

constants

w
(N)
i > 0, i = 1, 2, . . . , N, N = 1, 2, . . . ,

such that the intensity measure of the Poisson random measures ν
(N)
i in the stochastic

ranking process (2) is given by

ρ
(N)
i ((s, t]) = w

(N)
i

∫ t

s

ã(u) du, i = 1, 2, . . . , N, N = 1, 2, . . . .(104)

As in the proof of Proposition 5.1, we have
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Corollary 5.2. Let ã ∈ L1
loc(R+). If there exists a probability distribution λ on R+

such that

λ(N) :=
1

N

N∑
i=1

δ
w

(N)
i

→ λ, weakly, as N → ∞,(105)

then a sequence of probability distributions Λ̃(N), N = 1, 2, . . . , on L1
loc(R+) defined by

Λ̃(N) =

∫
�+

δwãλ
(N)
i (dw) =

1

N

N∑
i=1

δ
w

(N)
i ã

converges weakly to a probability distribution Λ̃ =
∫
�+

δwãλ(dw), as N → ∞.

In particular, Proposition 1.1 holds with ρ
(N)
i ((s, t]) = w

(N)
i

∫ t

s
ã(u) du, and yC(t) of

(11) is given by

yC(t) = 1 −
∫
�+

e−w A(t) λ(dw),(106)

where

A(t) =

∫ t

0

ã(u) du.(107)

�

The formula (106) is to be compared with the case of the (homogeneous) Poisson

process in [12, Proposition 2], where we have

yC(t) = 1 −
∫
�+

e−wtλ(dw).(108)

λ in (108) is the (infinite particle limit asymptotic) distribution of jump rates, while λ in

the case of common time dependence (106) is the distribution of relative jump rates.

To study a time change according to the common intensity measure, let us first make

a heuristic observation. Suppose we could trace the trajectories of n � N particles

j1, j2, . . . , jn. The total number of jumps of the n particles in the time interval (0, t] is

given by

S(N,n)(t) =
n∑

i=1

ν
(N)
ji

((0, t]).(109)

If n is large (n 
 1), we expect as a consequence of the law of large numbers, as in

Proposition 1.1,

S(N,n)(t) �
n∑

i=1

ρ
(N)
ji

((0, t]) = A(t) Z(N, n),(110)
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where we put

Z(N, n) =

n∑
i=1

w
(N)
ji

,(111)

and also used (104) and (107). Using (110) in (106), we have

yC(t) � 1 −
∫
�+

e−w S(N,n)(t)/Z(N, n) λ(dw).(112)

The approximate formula (112) suggests that, if we perform a time change t′ = S(N,n)(t),

then modulo scaling constant Z(N, n), we recover a formula (108) for the homogeneous

case.

We can put the heuristic consideration which lead to (112) in a mathematically precise

form. For t � 0, let

S(N)(t) =
N∑

i=1

ν
(N)
i ((0, t])(113)

and denote its right continuous inverse by

s(N)(t) = inf{s � 0 ; S(N)(s) > t}.(114)

Let ã ∈ L1
loc(R+). For simplicity, assume further that

ã(t) > 0, t � 0.(115)

Then A(t) of (107) is strictly increasing, and the inverse function A−1 is also continuous.

Theorem 5.3. Let ã ∈ L1
loc(R+), and assume (115). Put

Z(N) =
N∑

i=1

w
(N)
i(116)

and assume

lim
N→∞

Z(N) = ∞.(117)

If, as in Corollary 5.2, there exists a probability distribution λ on R+ such that (105)

holds, then for each t � 0

Y
(N)
C (s(N)(Z(N) t)) → yC(A−1(t)) = 1 −

∫
�+

e−w tλ(dw), in probability, as N → ∞,

(118)

where Y
(N)
C is defined in (10). �
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To prove Theorem 5.3, we first provide a rigorous version of (110).

Lemma 5.4. For t � 0,

1

Z(N)
S(N)(t) → A(t), in probability, as N → ∞.(119)

and

s(N)(Z(N) t) → A−1(t), in probability, as N → ∞.(120)

�

Proof. Since by definition ν
(N)
i ((0, t]) follows the Poisson distribution with expecta-

tion ρ
(N)
i ((0, t]), we have

E[ S(N)(t) ] = V[ S(N)(t) ] = A(t) Z(N),(121)

where V[ · ] denotes variance. For ε > 0, (121), (116), and Chebyshev’s inequality imply

P[ |S(N)(t) − E[ S(N)(t) ]| > Z(N)ε ] � (εZ(N))−2V[ S(N)(t) ] =
A(t)

ε2Z(N)
,

which, with (117), implies

1

Z(N)
(S(N)(t) − E[ S(N)(t) ]) → 0, in probability, as N → ∞.

This, with (121), implies (119).

Next, noting that S(N)(t) is non-decreasing in t, (114) implies

{ω ∈ Ω ; s(N)(Z(N)t)(ω) � A−1(t) + ε} ⊂ {ω ∈ Ω ;
1

Z(N)
S(N)

(
A−1(t) +

ε

2

)
(ω) � t}.

(122)

The assumption (115) implies that A is strictly increasing, hence, δ = A(A−1(t)+ε/2)−t >

0, and

{ω ∈ Ω ;
1

Z(N)
S(N)(A−1(t) +

ε

2
) � t}

= {ω ∈ Ω ;
1

Z(N)
S(N)(A−1(t) +

ε

2
) � A

(
A−1(t) +

ε

2

)
− δ}

⊂ {ω ∈ Ω ;

∣∣∣∣ 1

Z(N)
S(N)(A−1(t) +

ε

2
) − A

(
A−1(t) +

ε

2

)∣∣∣∣ � δ}.

This and (119) and (122) imply

lim
N→∞

P[ s(N)(Z(N)t) � A−1(t) + ε ] = 0.(123)
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Similarly, δ′ = t − A(A−1(t) − ε/2) > 0, and

{ω ∈ Ω ; s(N)(Z(N)t) � A−1(t) − ε}
⊂ {ω ∈ Ω ;

1

Z(N)
S(N)

(
A−1(t) − ε

2

)
� t}

⊂ {ω ∈ Ω ;

∣∣∣∣ 1

Z(N)
S(N)(A−1(t) − ε

2
) − A

(
A−1(t) − ε

2

)∣∣∣∣ � δ′},

which implies

lim
N→∞

P[ s(N)(Z(N)t) � A−1(t) − ε ] = 0.(124)

(123) and (124) prove (120).

Proof of Theorem 5.3. By triangular inequality, we have

|Y (N)
C (s(N)(Z(N) t)) − yC(A−1(t))|

� |Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))| + |Y (N)

C (A−1(t)) − yC(A−1(t))|.

Corollary 5.2 implies that the second term in the right hand side converges to 0 in prob-

ability as N → ∞, so it suffices to prove that, for all ε > 0,

lim
N→∞

P[ |Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))| � ε ] = 0(125)

holds.

For δ > 0 put

Ω
(N)
δ := {ω ∈ Ω ; |s(N)(Z(N) t)(ω) − A−1(t)| < δ}.(126)

Then (120) implies

lim
N→∞

P[ Ω
(N)
δ

c ] = 0.(127)

The definition (10) of Y
(N)
C implies

|Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))|

=
1

N

N∑
i=1

1s(N)(Z(N) t)<τ
(N)
i,1 �A−1(t)

+
1

N

N∑
i=1

1A−1(t)<τ
(N)
i,1 �s(N)(Z(N) t)

.
(128)

Combining (126) and (128), we have

P[ |Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))| � ε, Ωδ ] � P

[
N∑

i=1

1τ
(N)
i,1 ∈(A−1(t)−δ,A−1(t)+δ)

� Nε

]
.
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Applying Chebyshev’s inequality, we further have

P[ |Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))| � ε, Ωδ ]

� 1

Nε

N∑
i=1

E[ 1τ
(N)
i,1 ∈(A−1(t)−δ,A−1(t)+δ)

]

=
1

Nε

N∑
i=1

(
e−A(A−1(t)−δ) w

(N)
i − e−A(A−1(t)+δ) w

(N)
i

)
=

1

ε

∫
�+

(
e−A(A−1(t)−δ) w − e−A(A−1(t)+δ) w

)
λ(N)(dw).

This, with (127) and the assumption (105), implies

lim
N→∞

P[ |Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))| � ε ]

� lim
N→∞

P[ Ω
(N)
δ

c
] + lim

N→∞
P[ |Y (N)

C (s(N)(Z(N) t)) − Y
(N)
C (A−1(t))| � ε, Ω

(N)
δ ]

� 1

ε

∫
�+

(
e−A(A−1(t)−δ) w − e−A(A−1(t)+δ) w

)
λ(dw).

This holds for all δ > 0, hence the bounded convergence theorem and the continuity of

A(t) imply

lim
N→∞

P[ |Y (N)
C (s(N)(Z(N) t)) − Y

(N)
C (A−1(t))| � ε ]

� inf
δ>0

1

ε

∫
�+

(
e−A(A−1(t)−δ) w − e−A(A−1(t)+δ) w

)
λ(dw)

� 1

ε

∫
�+

lim
δ↓0

(
e−A(A−1(t)−δ) w − e−A(A−1(t)+δ) w

)
λ(dw) = 0.

This proves (125), hence Theorem 5.3 is proved. �

As an explicit example to Z(N) and λ, consider, as in [13, 14], the Zipf’s law, which

is

w
(N)
i = a

(
N

i

)1/b

, i = 1, 2, . . . , N,(129)

for positive constants a and b. For this choice,

Z(N) =
N∑

i=1

w
(N)
i = (1 + o(N0)) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

aN

∫ 1

0

x−1/bdx =
aN b

b − 1
b > 1,

aN

∫ 1

1/N

x−1dx = aN log N b = 1,

aN1/b
∞∑
i=1

1

i1/b
= aN1/bζ(1/b) 0 < b < 1 .

(130)
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The corresponding N → ∞ weak limit is the (generalized) Pareto distribution, defined

by

λ([w,∞)) =

⎧⎨
⎩

( a

w

)b

w � a,

1 w < a.
(131)

With the Pareto distribution (131) for λ, (112) is (for N = n)

xC(t) = NyC(t) + 1 � N − N

∫
�+

e−w S(N)(t)/Z(N) λ(dw)

= N − b

(
S(N)(t)

ζN(1/b)

)b

Γ(−b,
S(N)(t)

N1/bζN(1/b)
)

= N − Ne−S(N)(t)/(N1/bζN (1/b)) +

(
S(N)(t)

ζN(1/b)

)b

Γ(1 − b,
S(N)(t)

N1/bζN(1/b)
) =: x

(N)
b (S(N)(t)),

(132)

where ζN(z) =
∑N

i=1 i−z. The last line in (132) is obtained by integration by parts from

the second line, as in [14], and is suitable for 0 < b < 1. Note that the parameter a in the

Pareto distribution (131) disappears in the time changed formula (132).

A Remarks on practical application.

In [13, 14], the mathematical results on the stochastic ranking processes has been suc-

cessfully applied to practical data, such as ranking data of books at an online bookstore

Amazon.co.jp [14, 13] and list of subject titles at a collected bulletin board 2ch.net [13].

One may wonder why such a simple rule as the move-to-front rule could be observed

in actual social activities. An explanation is that the ranking numbers on the web (such

as those representing the books, in the case of online bookstores) usually seek to align

the web pages in the order of current popularity of the pages. A social impact of the

development of web-based activities is that it has become possible to catalog a huge

amount of unpopular items [1]. In fact, a majority of books catalogued on an online

bookstore are sold less than one copy a month. For such books, any reasonable order

reflecting the current popularity would be equal to the order of the time of most recent

sales, because the second recent sale of such book would be long ago, hence would not

reflect current popularity. Thus the move-to-front rule will provide a simple but universal

model in the rankings on the web.

A ranking of a book at Amazon.co.jp jumps close to top of the ranking whenever the

book is sold at Amazon.co.jp [14], and a subject title in the web page for the list of 2ch.net

jumps to the top whenever a comment (a ‘response’) concerning the subject is written
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[13]. Ordering a book and responding to a subject are social activities which naturally

are expected to contain day-night difference in the intensity.

Explicit time dependence, reflecting day-night difference of social activities, are ob-

served in actual data. Let us regard such time dependence as the non-uniformity of

intensity measures ρ
(N)
i . ρ

(N)
i are usually unknown quantities to be determined statisti-

cally from observed data. We then have to consider both particle dependence and time

dependence in the statistical analysis of the practical data. The assumption of common

time dependence (104) developed in Section 5 provides a simple way to take day-night-

difference of social activity into account, in applying the stochastic ranking process with

inhomogeneous intensity.

A.1 Factorization of day-night social activity difference.

In [14], a data taken during the period of about 3 months at Amazon.co.jp is used to

statistically obtain λ, based on (108). The data was taken manually in the year 2007, at

21:00 each day. We can show that in the case of common time dependence assumption

(104), we can ‘factorize’ periodic time dependence of ã, and that the use of (108) in [14, 13]

is justified in obtaining λ from data with periodic time dependence. In fact, assume that

there exists a positive constant T such that

ã(t + T ) = ã(t), t � 0.(133)

We may normalize w
(N)
i ’s in (104) so that

1

T

∫ T

0

ã(u) du = 1(134)

holds. Then (133) and (134) imply
∫ t+T

t
(ã(u) − 1) du = 0, so that

Ap(t) := A(t) − t =

∫ t

0

(ã(u) − 1) du(135)

is a periodic function with period T , and (106) is

yC(t) = 1 −
∫
�+

e−w (t+Ap(t)) λ(dw).(136)

If we collect data at each fixed time of the day, at tn = t0 + n T , n = 0, 1, 2, . . . , then

(136) implies

yC(tn) = 1 −
∫
�+

e−w(nT+t0+Ap(t0)) λ(dw).(137)

Hence the effect of day-night difference in ã is absorbed in the translation of origin of

time t0 	→ t0 + Ap(t0), and the use of formula (108) for the constant intensity is justified.

A consideration of this subsection is of practical use when one has a data much longer

than 24 hours, as in the case of [14].
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A.2 Time change according to intensity measure.

In [13], a data of list of subject (‘thread’) titles at a collected bulletin board 2ch.net is

statistically analyzed using stochastic ranking process. In [13] the data was collected from

a short period in the daytime, and the problem of day-night activity difference was not

serious, hence a fit to the formula (108) for the constant jump rate (homogeneous intensity)

was possible [13]. However, to study data of longer periods for sharper statistical results,

effects of day-night activity difference need to be taken into account.

In applying (104) to the obtained data to extract time dependence (day-night differ-

ence), we need to estimate the function ã in (104) or A in (107). This is accomplished by

making use of (110) and (112). In the case of 2ch.net [13], N in (110) or (112) is about

700, and since full records of transaction are accessible at 2ch.net, it is possible to put n

in (112) equal to N and count all the threads’ jumps. In the case of Amazon.co.jp, N is

of order million, and n = N is unrealistic. Even in such cases, if we observe sufficiently

large number of books (n 
 1), we can apply the idea introduced here.

Note that the series Z(N) are approaching their asymptotics in (130) rather slowly

for the Pareto distribution. Therefore in practical application of (118) with the Pareto

distribution for λ, if one takes N = O(103) as in 2ch.net [13], one should avoid using the

asymptotic formula in the right hand side of (130), and calculate the finite sums (116) or

(111).

We announce that we actually collected a 24 hours data of size nd = 70140 from

2ch.net, and performed a statistical fit of the data to (132), with N = 697, and obtained

b = 0.872±0.002. (The error is 90% confidence level. See [14] for details.) Apparently, we

have a good single parameter fit to the data, which suggests that the practical assumption

(104) is good. Details may be reported elsewhere.

We note that in [13], a value of b = 0.6145 was obtained for 2ch.net (with different set

of data). This is much smaller than the present result. The data used in [13] was small in

size, because the data was collected manually in those times, and also, to avoid influence

of day-night difference in the total activity, the data was for a short time period in [13],

so that the result in [13] is less reliable compared to the present result.

We also note that we have b < 1, consistently with previous observation [14] for

Amazon.co.jp, where we obtained b = 0.809. This shows that, as in Amazon.co.jp, the

popularity of subjects is concentrated to a relatively small number of threads in 2ch.net.
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